精英家教网 > 高中数学 > 题目详情

【题目】已知直线及点.

1)证明直线过某定点,并求该定点的坐标;

(2)当点到直线的距离最大时,求直线的方程.

【答案】(1)证明见解析,定点坐标为(2)15x24y20.

【解析】试题分析:1直线l的方程可化为 a(2xy1)b(xy1)0,即可解得定点;

(2)由1知直线l恒过定点A当直线l垂直于直线PA时,点P到直线l的距离最大,利用点斜式求直线方程即可.

试题解析:

1证明:直线l的方程可化为 a(2xy1)b(xy1)0

,所以直线l恒过定点

21知直线l恒过定点A

当直线l垂直于直线PA时,点P到直线l的距离最大.

又直线PA的斜率,所以直线l的斜率kl=-

故直线l的方程为

15x24y20

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设集合A={x|x2+2x﹣3<0},集合B={x||x+a|<1}.
(1)若a=3,求A∪B;
(2)设命题p:x∈A,命题q:x∈B,若p是q成立的必要不充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=xlnx,g(x)=x3+ax2﹣x+2
(1)求函数f(x)的单调区间;
(2)求函数f(x)在[t,t+2](t>0)上的最小值;
(3)对一切的x,2f(x)≤g′(x)+2恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】判断下列结论的正误(正确的打“√”,错误的打“×”).

)在增函数与减函数的定义中,可以把任意两个自变量改为存在两个自变量_____

)函数的单调递减区间是_____

)所有的单调函数都有最值._______

表示同一个集合.______

)已知定义在上的函数的图象是连续不断的,当时,则方程至少有一个实数解._______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角A,B,C所对的边分别为a,b,c,已知cosB= ,tanC= . (Ⅰ)求tanB和tanA;
(Ⅱ)若c=1,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}的前n项和为Sn , 且Sn=2﹣an , n∈N* , 设函数f(x)=log x,数列{bn}满足bn=f(an),记{bn}的前n项和为Tn . (Ⅰ)求an及Tn
(Ⅱ)记cn=anbn , 求cn的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=x2+bx﹣1(b∈R).
(1)若函数y=f(x)在[1,+∞)上单调,求b的取值范围;
(2)若函数y=|f(x)|﹣2有四个零点,求b的取值范围;
(3)若函数y=|f(x)|在[0,|b|)上的最大值为g(b),求g(b)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=x3+3ax2+bx+a2(a>1)在x=﹣1时有极值0.
(1)求常数 a,b的值;
(2)方程f(x)=c在区间[﹣4,0]上有三个不同的实根时,求实数c的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平行四边形ABCD的三个顶点的坐标为A(﹣1,5),B(﹣2,﹣1),C(2,3).

(1)求平行四边形ABCD的顶点D的坐标;
(2)在△ACD中,求CD边上的高所在直线方程;
(3)求四边形ABCD的面积.

查看答案和解析>>

同步练习册答案