精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的右焦点为,且过点

求椭圆的标准方程;

设直线l与椭圆在第一象限的交点为M,过点F且斜率为的直线与l交于点N,若的面积之比为3为坐标原点,求k的值.

【答案】(1);(2)

【解析】

1)根据题意列出有关的方程组,求出这两个数的值,即可求出椭圆的标准方程;

2)设点的坐标为,点的坐标,利用已知条件可得,然后将直线的方程分别与椭圆方程和直线的方程联立,求出点的坐标,结合条件可求出的值.

1)由题意可知,解得(负值舍去),

所以椭圆的标准方程为

2)设点的坐标为,点的坐标,由题可知

的面积之比为32的面积之比为25

也即

,消去,可得

易知直线的方程为

,消去,可得

所以,整理得,解得

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知关于的不等式.

(1)当时,解不等式;

(2)如果不等式的解集为空集,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数,若存在,使成立,则称的不动点.已知函数 .

1)当时,求函数的不动点;

2)若对任意实数,函数恒有两个相异的不动点,求的取值范围;

3)在(2)的条件下,若的两个不动点为,且,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,AC=3,BC=4,AB=5,以AB所在直线为轴,三角形面旋转一周形成一旋转体,求此旋转体的表面积和体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,我国电子商务蓬勃发展,有关部门推出了针对网购平台的商品和服务的评价系统,从该系统中随机选出100名交易者,并对其交易评价进行了统计,网购者对商品的满意率为0.6,对服务的满意率为0.75,其中对商品和服务都满意的有40人.

(1)根据已知条件完成下面的列联表,并回答能否有的把握认为“网购者对服务满意与对商品满意之间有关”?

对服务满意

对服务不满意

合计

对商品满意

对商品不满意

合计

(2)若对商品和服务都不满意者的集合为.已知中有2名男性,现从中任取2人调查其意见.求取到的2人恰好是一男一女的概率.

附: (其中为样本容量)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

)若,求曲线在点处的切线方程.

)求函数的单调区间.

)设函数,若对于任意,都有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为直角梯形, ,平面底面 的中点, 是棱上的点,

(Ⅰ)求证:平面平面

(Ⅱ)若三棱锥的体积是四棱锥体积的,设,试确定的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,角A,B,C的对边分别是且满足

求角B的大小;

(2)若的面积为为的值;

查看答案和解析>>

同步练习册答案