精英家教网 > 高中数学 > 题目详情
设过点(
2
,2
2
)
的直线l的斜率为k,若圆x2+y2=4上恰有三点到直线l的距离等于1,则k的值是
1或7
1或7
分析:由圆的方程得出圆心坐标和半径,并由已知点和斜率表示出直线l的方程,根据圆上恰有三点到直线l的距离等于1,可得圆心到直线l的距离d=1,故利用点到直线的距离公式表示出圆心到直线l的距离d,列出关于k的方程,求出方程的解即可得到k的值.
解答:解:由圆的方程得圆心坐标为(0,0),半径为2,
由直线l过点(
2
,2
2
)
,且斜率为k,
得到直线l的方程为:y-2
2
=k(x-
2
),即kx-y-
2
k+2
2
=0,
由题意得:圆心到直线l的距离d=
2
| 2-k |
1+k2
=1,
解得:k=1或k=7,
则k的值是1或7.
故答案为:1或7
点评:此题考查了直线与圆相交的性质,涉及的知识有点到直线的距离公式,直线的点斜式方程,以及圆的标准方程,根据题意得出圆心到直线l的距离d=1是本题的突破点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
,A1,A2,B1是椭圆C的顶点,若椭圆C的离心率e=
3
2
,且过点(
2
2
2
)

(Ⅰ)求椭圆C的方程;
(Ⅱ)作直线l,使得l∥A2B1,且与椭圆C相交于P、Q两点(异于椭圆C的顶点),设直线A1P和直线B1Q的倾斜角分别是α,β,求证:α+β=π.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•淄博二模)已知抛物线y2=4x的焦点为F2,点F1与F2关于坐标原点对称,直线m垂直于x轴(垂足为T),与抛物线交于不同的两点P、Q且
F1P
F2Q
=-5

(I)求点T的横坐标x0
(II)若以F1,F2为焦点的椭圆C过点(1,
2
2
)

①求椭圆C的标准方程;
②过点F2作直线l与椭圆C交于A,B两点,设
F2A
F2B
,若λ∈[-2,-1],求|
TA
+
TB
|
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知中心在原点O,焦点在x轴上,离心率为
3
2
的椭圆过点(
2
2
2
)
.设不过原点O的直线l与该椭圆交于P,Q两点,且直线OP,PQ,OQ的斜率依次成等比数列,求△OPQ面积的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
,A1,A2,B1是椭圆C的顶点,若椭圆C的离心率e=
3
2
,且过点(
2
2
2
)

(Ⅰ)求椭圆C的方程;
(Ⅱ)作直线l,使得lA2B1,且与椭圆C相交于P、Q两点(异于椭圆C的顶点),设直线A1P和直线B1Q的倾斜角分别是α,β,求证:α+β=π.
精英家教网

查看答案和解析>>

同步练习册答案