精英家教网 > 高中数学 > 题目详情
若f(x)是R上的减函数,且f(0)=3,f(3)=-1,设P={x||f(x+t)-1|<2},Q={x|f(x)<-1},若“x∈P”是“x∈Q”的充分不必要条件,则实数t的取值范围是
(-∞,-3]
(-∞,-3]
分析:利用f(x)是R上的减函数,且f(0)=3,f(3)=-1,先求出集合P和Q.再由“x∈P”是“x∈Q”的充分不必要条件,求出t的取值范围.
解答:解:由f(x)是R上的减函数,且f(0)=3,f(3)=-1得
P={x||f(x+t)-1|<2}={x|-1<f(x+t)<3}={x|f(3)<f(x+t)<f(0)}={x|0<x+t<3}={x|-t<x<3-t};
Q={x|f(x)<-1}={x|f(x)<f(3)}={x|x>3}.
若“x∈P”是“x∈Q”的充分不必要条件,
则必有-t≥3,t≤-3.
故答案为:(-∞,-3].
点评:本题考查必要条件、充分条件、充要条件的判断,解题时要认真审题,仔细解答,注意不等式知识的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

8、若f(x)是R上的减函数,且f(x)的图象过点(0,3)和(3,-1),则不等式|f(x+1)-1|<2的解集(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

4、若f(x)是R上的减函数,且f(x)的图象经过点A(0,3)和B(3,-1),则不等式|f(x+1)-1|<2的解集是
(-1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

若f(x)是R上的减函数,且f(0)=3,f(3)=-1,设P={x||f(x+t)-1|<2},Q={x|f(x)<-1},若“x∈Q”是“x∈P”的必要不充分条件,则实数t的取值范围是
t≤-3
t≤-3

查看答案和解析>>

科目:高中数学 来源: 题型:

若f(x)是R上的减函数,且f(x)的图象经过点A(0,4)和点B(3,-2),则当不等式|f(x+t)-1|<3的解集为(-1,2 ) 时,t的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若f(x)是R上的减函数,并且f(x)的图象经过点A(-1,5)和B(3,-1),则不等式|f(x+1)-2|<3的解集是(  )

查看答案和解析>>

同步练习册答案