精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系xOy中,曲线 ,曲线C2的参数方程为: ,(θ为参数),以O为极点,x轴的正半轴为极轴的极坐标系.
(1)求C1 , C2的极坐标方程;
(2)射线 与C1的异于原点的交点为A,与C2的交点为B,求|AB|.

【答案】
(1)解:将 代入曲线C1方程:(x﹣1)2+y2=1,

可得曲线C1的极坐标方程为ρ=2cosθ,

曲线C2的普通方程为 ,将 代入,

得到C2的极坐标方程为ρ2(1+sin2θ)=2


(2)解:射线的极坐标方程为 ,与曲线C1的交点的极径为

射线 与曲线C2的交点的极径满足 ,解得

所以


【解析】(1)将 代入曲线C1方程可得曲线C1的极坐标方程.曲线C2的普通方程为 ,将 代入,得到C2的极坐标方程.(2)射线的极坐标方程为 ,与曲线C1的交点的极径为ρ1 , 射线 与曲线C2的交点的极径满足 ,解得ρ2 . 可得|AB|=|ρ1﹣ρ2|.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆 左焦点左顶点椭圆上一点满足轴,且点轴下方, 连线与左准线交于点过点任意引一直线与椭圆交于连结交于点若实数满足: .

(1)求的值;

(2)求证:点在一定直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某几何体的三视图如图所示,且该几何体的体积是3,则正视图的的值__________

【答案】3

【解析】 由已知中的三视图可得该几何体是一个以直角梯形为底面,梯形上下边长为,高为

如图所示, 平面

所以底面积为

几何体的高为,所以其体积为

点睛:在由三视图还原为空间几何体的实际形状时,要从三个视图综合考虑,根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线在还原空间几何体实际形状时,一般是以正视图和俯视图为主,结合侧视图进行综合考虑求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解

型】填空
束】
16

【题目】已知椭圆 的右焦点为 为直线上一点,线段于点,若,则__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn,a4=2且,数列满足 ,

(1)证明:数列{an}为等差数列;

(2)是否存在正整数(1<),使得成等比数列,若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列的前项和为,若数列的各项按如下规律排列;有如下运算结论:①;②数列是等比数列;③数列的前项和为;④若存在正整数,使得,则

其中正确的结论是________(将你认为正确的结论序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图则下面结论中不正确的是( )

建设前经济收入构成比例 建设后经济收入构成比例

A. 新农村建设后养殖收入增加了一倍

B. 新农村建设后,其他收入增加了一倍以上

C. 新农村建设后,种植收入减少

D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“把你的心我的心串一串,串一株幸运草串一个同心圆…”一位数学老师一这句歌词为灵感构造了一道名为《爱2017》的题目,请你解答此题:设O为坐标原点,直线l与圆C1x2+y2=1相切且与圆C2x2+y2=r2r1)相交于A、B两不同点,已知Ex1y1)、Fx2y2)分别是圆C1、圆C2上的点.

(1)求r的值;

(2)求OEF面积的最大值;

(3)若OEF的外接圆圆心P在圆C1上,已知点D(3,0),求|DE|2+|DF|2的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 ,则实数的取值范围为__________

【答案】

【解析】m=0时,符合题意。

m≠0, ,则0<m<4

0m<4

答案为: .

点睛:解本题的关键是处理二次函数在区间上大于0的恒成立问题,对于二次函数的研究一般从以几个方面研究:

一是,开口;

二是,对称轴,主要讨论对称轴与区间的位置关系;

三是,判别式,决定于x轴的交点个数;

四是,区间端点值.

型】填空
束】
15

【题目】已知椭圆 的右焦点为 为直线上一点,线段于点,若,则__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数f(x)的最小值为1f(0)f(2)3.

(1)f(x)的解析式

(2)f(x)在区间[2aa1]上不单调求实数a的取值范围

(3)在区间[1,1]yf(x)的图象恒在y2x2m1的图象上方试确定实数m的范围

查看答案和解析>>

同步练习册答案