精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
ax+b
x2+1
是定义在(-1,1)上的奇函数,且f(
1
2
)=
2
5

(1)确定函数f(x)的解析式;
(2)当x∈(-1,1)时判断函数f(x)的单调性,并证明;
(3)解不等式f(2x-1)+f(x)<0.
分析:(1)利用函数为奇函数,可得b=0,利用f(
1
2
)=
2
5
,可得a=1,从而可得函数f(x)的解析式;
(2)利用导数的正负,可得函数的单调性;
(3)利用函数单调增,函数为奇函数,可得具体不等式,从而可解不等式.
解答:解:(1)由题意可知f(-x)=-f(x)
-ax+b
x2+1
=-
ax+b
x2+1

∴-ax+b=-ax-b,∴b=0
f(
1
2
)=
2
5
,∴a=1
f(x)=
x
x2+1

(2)当x∈(-1,1)时,函数f(x)单调增,证明如下:
f′(x)=
(1-x)(1+x)
(x2+1)2
,x∈(-1,1)
∴f′(x)>0,∴当x∈(-1,1)时,函数f(x)单调增;
(3)∵f(2x-1)+f(x)<0,且f(x)为奇函数
∴f(2x-1)<f(-x)
∵当x∈(-1,1)时,函数f(x)单调增,
-1<2x-1<1
-1<-x<1
2x-1<-x

0<x<
1
3

∴不等式的解集为(0,
1
3
).
点评:本题主要考查应用奇偶性来求函数解析式,考查函数的单调性,还考查了综合运用奇偶性和单调性来解不等式的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=a-
12x+1

(1)求证:不论a为何实数f(x)总是为增函数;
(2)确定a的值,使f(x)为奇函数;
(3)当f(x)为奇函数时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)
a-x  ,x≤0
1  ,0<x≤3
(x-5)2-a,x>3
(a>0且a≠1)图象经过点Q(8,6).
(1)求a的值,并在直线坐标系中画出函数f(x)的大致图象;
(2)求函数f(t)-9的零点;
(3)设q(t)=f(t+1)-f(t)(t∈R),求函数q(t)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-
1
2x+1
,若f(x)为奇函数,则a=(  )
A、
1
2
B、2
C、
1
3
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
a(x-1)x2
,其中a>0.
(I)求函数f(x)的单调区间;
(II)若直线x-y-1=0是曲线y=f(x)的切线,求实数a的值;
(III)设g(x)=xlnx-x2f(x),求g(x)在区间[1,e]上的最小值.(其中e为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-
12x-1
,(a∈R)
(1)求f(x)的定义域;
(2)若f(x)为奇函数,求a的值;
(3)考察f(x)在定义域上单调性的情况,并证明你的结论.

查看答案和解析>>

同步练习册答案