精英家教网 > 高中数学 > 题目详情

【题目】若函数f(x)= 恰有2个零点,则实数m的取值范围是

【答案】[ ,1)∪[6,+∞)
【解析】解:①当m≤0时,f(x)>0恒成立,
故函数f(x)没有零点;
②当m>0时,6x﹣m=0,
解得,x=log6m,
又∵x<1;
∴当m∈(0,6)时,log6m<1,
故6x﹣m=0有解x=log6m;
当m∈[6,+∞)时,log6m≥1,
故6x﹣m=0在(﹣∞,1)上无解;
∵x2﹣3mx+2m2=(x﹣m)(x﹣2m),
∴当m∈(0, )时,
方程x2﹣3mx+2m2=0在[1,+∞)上无解;
当m∈[ ,1)时,
方程x2﹣3mx+2m2=0在[1,+∞)上有且仅有一个解;
当m∈[1,+∞)时,
方程x2﹣3mx+2m2=0在[1,+∞)上有且仅有两个解;
综上所述,
当m∈[ ,1)或m∈[6,+∞)时,
函数f(x)=f(x)= 恰有2个零点,
所以答案是:[ ,1)∪[6,+∞).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,已知抛物线C1:x2=2py的焦点在抛物线C2,点P是抛物线C1上的动点.

(1)求抛物线C1的方程及其准线方程;

(2)过点P作抛物线C2的两条切线,M,N分别为两个切点,设点P到直线MN的距离为d,求d的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求函数f(x)=3﹣2asinx﹣cos2x,x∈[﹣ ]的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A(1,2),B(a,1),C(2,3),D(-1,b)(a,b∈R)是复平面上的四个点,且向量对应的复数分别为z1,z2.

(1)z1+z2=1+i,z1,z2;

(2)|z1+z2|=2,z1-z2为实数,a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)= 恰有2个零点,则实数m的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:

单价x(元)

9

9.2

9.4

9.6

9.8

10

销量y(件)

100

94

93

90

85

78

(1)求回归直线方程求回归直线方程.

(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是5元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知各项均不为0的数列{an}满足a1=a,a2=b,且an2=an1an+1+λ(n≥2,n∈N),其中λ∈R.
(1)若λ=0,求证:数列{an}是等比数列;
(2)求证:数列{an}是等差数列的充要条件是λ=(b﹣a)2
(3)若数列{bn}为各项均为正数的等比数列,且对任意的n∈N* , 满足bn﹣an=1,求证:数列{(﹣1)nanbn}的前2n项和为常数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三角形ABC的三边长为abc,且其中任意两边长均不相等.成等差数列.1)比较的大小,并证明你的结论;(2)求证B不可能是钝角

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】0,1,2,3,4这五个数字,可以组成多少个满足下列条件的没有重复数字的五位数?

(1)4整除;

(2)21 034大的偶数;

(3)左起第二、四位是奇数的偶数.

查看答案和解析>>

同步练习册答案