精英家教网 > 高中数学 > 题目详情
已知函数f(x)=4x+
1
x

(1)求函数y=f(x)-4的零点;
(2)证明函数f(x)在区间(
1
2
,+∞)
上为增函数.
分析:(1)求函数零点转化为函数图象与x交点的横坐标,即f(x)-4=0,得4x+
1
x
-4=0
,故可解;
(2)利用单调性的定义进行证明:设x1,x2是区间(
1
2
,+∞)
上的任意两个实数,且x1>x2,推证f(x1)>f(x2),即可.
解答:解(1)因为f(x)-4=4x+
1
x
-4
,令f(x)-4=0,得4x+
1
x
-4=0

即4x2-4x+1=0,解得x=
1
2

所以函数y=f(x)-4的零点是
1
2

(2)设x1,x2是区间(
1
2
,+∞)
上的任意两个实数,且x1>x2
f(x1)-f(x2)=4x1+
1
x1
-(4x2+
1
x2
)=4(x1-x2)
x1x2-
1
4
x1x2

x1x2
1
2
,得x1x2
1
4

又由x1>x2,得x1-x2>0,所以4(x1-x2)
x1x2-
1
4
x1x2
>0

于是f(x1)>f(x2),
所以函数f(x)在区间(
1
2
,+∞)
上为增函数.
点评:本题综合函数零点、函数的单调性,应注意理解函数零点的含义,掌握单调性证明的步骤.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
4(a-3)x+a+
1
2
(x<0)
ax,(x≥0)
,若函数f(x)的图象经过点(3,
1
8
),则a=
 
;若函数f(x)满足对任意x1≠x2
f(x1)-f(x2)
x1-x2
<0
都有成立,那么实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
4-x2
|x-3|-3
,则它是(  )
A、奇函数B、偶函数
C、既奇又偶函数D、非奇非偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
4-x2(x>0)
2(x=0)
1-2x(x<0)

(1)求f(a2+1)(a∈R),f(f(3))的值;
(2)当-4≤x<3时,求f(x)取值的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
4•2x+2
2x+1
+x•cosx (-1≤x≤1)
,且f(x)存在最大值M和最小值N,则M、N一定满足(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
4-x2(x>0)
2(x=0)
1-2x(x<0)

(1)画出函数f(x)图象;
(2)求f(a2+1)(a∈R),f(f(3))的值;
(3)当-4≤x<3时,求f(x)取值的集合.

查看答案和解析>>

同步练习册答案