精英家教网 > 高中数学 > 题目详情
14.已知函数f(x)=$\frac{1}{x}$,则 f′(-3)等于(  )
A.4B.$\frac{1}{9}$C.$-\frac{1}{4}$D.$-\frac{1}{9}$

分析 利用导数的运算法则先求出导函数为常函数,再求出f′(-3).

解答 解:f′(x)=-$\frac{1}{{x}^{2}}$,
∴f′(-3=)=$\frac{′}{\;}$$\frac{1}{9}$.
故选:D.

点评 求函数的导函数值,应该先求出导函数,再将自变量代入求出值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=log2(x+1),g(x)=log2(3x+1).
(1)求出使g(x)≥f(x)成立的x的取值范围;
(2)当x∈[0,+∞)时,求函数y=g(x)-f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知a<b,二次不等式ax2+bx+c≥0对任意实数x恒成立,则M=$\frac{a+2b+4c}{b-a}$的最小值为8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列说法不正确的是(  )
A.随机变量ξ服从正态分布N(1,σ2),若P(ξ<2)=0.8,则P(0<ξ<1)为0.3
B.已知研究x与y之间关系的一组数据如下表所示,则y对x的回归直线方程$\widehat{y}$=bx+a必过点($\frac{3}{2}$,4)
x0123
y1357
C.对某班级50名学生学习数学与学习物理的成绩进行调查,得到如下表所示:
数学成绩较好数学成绩一般合计
物理成绩较好18725
物理成绩一般61925
合计242650
经计算K2=$\frac{50×(18×19-6×7)^{2}}{25×25×24×26}$≈11.5
P(K2≥k)0.0500.0100.001
k3.8416.63510.828
参照附表,得到的正确结论是:在犯错误的概率不超过0.1%的前提下,认为“数学成绩与物理成绩无关”
D.对一个容量为N的总体抽取容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p1:p2:p3,则p1=p2=p3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知$<\overrightarrow a,\overrightarrow b>=60°$,$|{\overrightarrow a}|=1,|{\overrightarrow b}|=2$,则$|{2\overrightarrow a-\overrightarrow b}|$=(  )
A.1B.2C.$\sqrt{3}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.命题P:“对?x∈R,x2+1≥2x”的否定?P为(  )
A.?x∈R,x2+1>2xB.?x∈R,x2+1≥2xC.?x∈R,x2+1<2xD.?x∈R,x2+1<2x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.根据下列条件,求x的值:
(1)4×4x-5×2x-6=0;
(2)9x+6x=22x+1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.不等式|2x-3|+3x≤0的解集为(  )
A.(-∞,-3)B.(-∞,-3]C.(-3,+∞)D.[-3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知在直角坐标系xOy中,直线l的参数方程是$\left\{\begin{array}{l}{x=2+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数),在极
坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的极坐标方程为ρ=4$\sqrt{2}$cos(θ+$\frac{π}{4}$).
(Ⅰ)将圆C的极坐标方程化为直角坐标方程;
(Ⅱ)若直线l与圆C相交于A,B两点,点P的坐标为(2,0),试求$\frac{1}{|PA|}$+$\frac{1}{|PB|}$的值.

查看答案和解析>>

同步练习册答案