精英家教网 > 高中数学 > 题目详情

如图,在棱长为2的正方体ABCD-A1B1C1D1内(含正方体表面)任取一点M,则数学公式的概率p=________.


分析:本题是几何概型问题,欲求点M满足的概率,先以A为原点建立空间直角坐标系,由数量积公式得出点M到平面ABCD的距离大于等于,点M的轨迹是正方体的,求出其体积,再根据几何概型概率公式结合正方体的体积的方法求解即可.
解答:本题是几何概型问题,正方体的体积为V=8,
以A为原点建立空间直角坐标系,AB为x轴,AD为y轴,AA1为z轴.
那么A(0,0,0),C1(0,0,2)
设M(x,y,z),那么x,y,z∈[0,2]
=(x,y,z),=(0,0,2)
,即2z≥1,z
即点M与平面ABCD的距离大于等于,点M的轨迹是正方体的,其体积为:V1=
的概率p为:
故答案为:
点评:本小题主要考查几何概型、几何概型的应用、几何体的体积等基础知识,考查空间想象能力、化归与转化思想.属于基础题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在棱长为2的正四面体A-BCD中,若以△ABC为视角正面,则其正视图的面积是(  )

查看答案和解析>>

科目:高中数学 来源:2011-2012学年浙江省宁波市慈溪市高三(上)期中数学试卷(文科)(解析版) 题型:选择题

如图,在棱长为2的正四面体A-BCD中,若以△ABC为视角正面,则其正视图的面积是( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在棱长为2的正四面体ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点,则四边形EFGH的面积为        

 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在棱长为2的正四面体ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点,则四边形EFGH的面积为        

 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在棱长为2的正四面体ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点,则四边形EFGH的面积为        

 

查看答案和解析>>

同步练习册答案