【题目】已知函数(其中).
(1)讨论函数的极值;
(2)对任意,恒成立,求的取值范围.
【答案】(1)答案不唯一,具体见解析(2)
【解析】
(1)求出函数的定义域、导函数,对和分两种情况讨论可得;
(2)由(1)知当时,不符合题意;当时,的最大值为要使恒成立,即是使成立,令利用导数分析其单调性,即可求得的取值范围.
(1)的定义域为,,
①当时,,所以在上是减函数,无极值.
②当时,令,得,
在上,,是增函数;在上,,是减函数.
所以有极大值,无极小值.
(2)由(1)知,①当时,是减函数,令,则,
,不符合题意,
②当时,的最大值为,
要使得对任意,恒成立,
即要使不等式成立,
则有解.
令,所以
令,由,得.
在上,,则在上是增函数;
在上,,则在上是减函数.
所以,即,
故在上是减函数,又,
要使成立,则,即的取值范围为.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,曲线C的参数方程为,(θ为参数),以原点为极点,x轴非负半轴为极轴建立极坐标系.
(1)求曲线C的极坐标方程;
(2)在平面直角坐标系xOy中,A(﹣2,0),B(0,﹣2),M是曲线C上任意一点,求△ABM面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知常数,数列的前项和为, , ;
(1)求数列的通项公式;
(2)若,且是单调递增数列,求实数的取值范围;
(3)若, ,对于任意给定的正整数,是否存在正整数、,使得?若存在,求出、的值(只要写出一组即可);若不存在,请说明理由;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)当时,求曲线在点处的切线方程;
(2)当时,若关于的方程有唯一实数解,试求实数的取值范围;
(3)若函数有两个极值点,,且不等式恒成立,试求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在我们的教材必修一中有这样一个问题,假设你有一笔资金,现有三种投资方案供你选择,这三种方案的回报如下:
方案一:每天回报元;
方案二:第一天回报元,以后每天比前一天多回报元;
方案三:第一天回报元,以后每天的回报比前一天翻一番.
记三种方案第天的回报分别为,,.
(1)根据数列的定义判断数列,,的类型,并据此写出三个数列的通项公式;
(2)小王准备做一个为期十天的短期投资,他应该选择哪一种投资方案?并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知曲线的参数方程为,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求曲线与曲线两交点所在直线的极坐标方程;
(2)若直线的极坐标方程为,直线与轴的交点为,与曲线相交于两点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线的参数方程为,以坐标原点为极点,轴非负半轴为极轴建立极坐标系,点为曲线上的动点,点在线段 的延长线上,且满足,点的轨迹为.
(1)求曲线,的极坐标方程;
(2)设点的极坐标为,求面积的最小值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,三棱柱的侧面是平行四边形,,平面平面,且分别是的中点.
(Ⅰ)求证:;
(Ⅱ)求证:平面;
(Ⅲ)在线段上是否存在点,使得平面?若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com