【题目】某人准备在一块占地面积为1800平方米的矩形地块中间建三个矩形温室大棚,大棚周围均是宽为1米的小路(如图所示),大棚占地面积为平方米,其中.
(1)试用表示;
(2)若要使的值最大,则的值各为多少?
【答案】(1)S=1808-3x-y.(2)当x=40,y=45时,S取得最大值.
【解析】
本试题主要是考察了函数在实际生活中的运用,借助于不等式的思想或者是函数单调性的思想,求解最值的实际应用。
(1)根据已知条件,设出变量,然后借助于面积关系,得到解析式。
(2)根据第一问中的结论,分析函数的性质,或者运用均值不等式的思想,求解得到最值。
解: (1)由题可得:xy=1800,b=2a
则y=a+b+3=3a+3, ··········· 4分
S=(x-2)a +(x-3)b=(3x-8)a=(3x-8)=1808-3x-y. ········ 8分
(2) S=1808-3x-y=1808-3x-×=1808-3 (x+) ······· 10分
≤1808-3×2=1808-240=1568, ·········· 12分
当且仅当x=,即x=40时取等号,S取得最大值.此时y==45,
所以当x=40,y=45时,S取得最大值. 15分
科目:高中数学 来源: 题型:
【题目】已知对任意平面向量,把绕其起点沿逆时针方向旋转角得到向量,,叫做把点绕点逆时针方向旋转角得到点.
(1)已知平面内点,点,把点绕点顺时针方向旋转后得到点,求点的坐标;
(2)设平面内曲线上的每一点绕坐标原点沿逆时针方向旋转后得到的点的轨迹方程是曲线,求原来曲线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:的左、右焦点分别为,,过且垂直于轴的焦点弦的弦长为,过的直线交椭圆于,两点,且的周长为.
(1)求椭圆的方程;
(2)已知直线,互相垂直,直线过且与椭圆交于点,两点,直线过且与椭圆交于,两点.求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,边a、b、c分别是角A、B、C的对边,且满足bcosC=(3a-c)cosB
(1)求cosB
(2)若△ABC的面积为4,b=4,求△ABC的周长
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知四棱锥中,底面是菱形,侧面平面,且,,.
(Ⅰ)证明:平面;
(Ⅱ)若点在线段上,且,试问:在上是否存在一点,使面?若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正项数列{an} 为等比数列,等差数列{bn} 的前n 项和为Sn (n∈N* ),且满足:S13=208,S9﹣S7=41,a1=b2,a3=b3.
(1)求数列{an},{bn} 的通项公式;
(2)设Tn=a1b1+a2b2+…+anbn (n∈N* ),求Tn;
(3)设,是否存在正整数m,使得cm·cm+1·cm+2+8=3(cm+cm+1+cm+2).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某投资公司计划投资两种金融产品,根据市场调查与预测,产品的利润与投资金额的函数关系为,产品的利润与投资金额的函数关系为(注:利润与投资金额单位:万元).
(1)该公司现有100万元资金,并计划全部投入两种产品中,其中万元资金投入产品,试把两种产品利润总和表示为的函数,并写出定义域;
(2)怎样分配这100万元资金,才能使公司的利润总和获得最大?其最大利润总和为多少万元.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2016年时红军长征胜利80周年,某市电视台举办纪念红军长征胜利80周年知识问答,宣传长征精神.首先在甲、乙、丙、丁四个不同的公园进行支持签名活动,其次在各公园签名的人中按分层抽样的方式抽取10名幸运之星,每人获得一个纪念品,其数据表格如下:
(Ⅰ)求此活动中各公园幸运之星的人数;
(Ⅱ)从乙和丙公园的幸运之星中任选两人接受电视台记者的采访,求这两人均来自乙公园的概率;
(Ⅲ)电视台记者对乙公园的签名人进行了是否有兴趣研究“红军长征”历史的问卷调查,统计结果如下(单位:人):
据此判断能否在犯错误的概率不超过0.01的前提下认为有兴趣研究“红军长征”历史与性别有关.
附临界值表及公式: ,其中
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com