精英家教网 > 高中数学 > 题目详情

【题目】如图,四棱锥中,底面为矩形,平面的中点.

1)证明:∥平面.

2)设二面角,求三棱锥的体积.

【答案】1)见解析(2

【解析】

(1)连结于点,连结. 根据四边形为矩形,所以的中点,的中点,利用三角形的中位线可得,再利用线面平行的判定定理证明.

(2) 根据平面,四边形为矩形,建立空间直角坐标系.,再求得平面DAE 平面CAE的法向量,根据二面角,利用,解得.,然后利用锥体体积公式求解.

(1)连结于点,连结.

因为四边形为矩形,所以的中点,

的中点,所以

平面平面,所以∥平面.

(2) 因为平面,四边形为矩形,所以两两垂直,

为坐标原点,的方向为轴的正方向,的方向为轴的正方向,的方向为轴的正方向,为单位长,建立空间直角坐标系.

,则

所以

为平面的法向量,则

可取

为平面的一个法向量,由题设知

,解得.

因为的中点,设的中点,

,且⊥面

故有三棱锥的高为

三棱锥的体积

所以三棱锥的体积为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,其中为常数.

1)证明:

2)是否存在,使得为等差数列?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2013年至201 9年我国二氧化硫的年排放量(单位:万吨)如下表,则以下结论中错误的是(

A.二氧化硫排放量逐年下降

B.2018年二氧化硫减排效果最为显著

C.2017年至2018年二氧化硫减排量比2013年至2016年二氧化硫减排量的总和大

D.2019年二氧化硫减排量比2018年二氧化硫减排量有所增加

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在开展学习强国的活动中,某校高三数学教师成立了党员和非党员两个学习组,其中党员学习组有4名男教师、1名女教师,非党员学习组有2名男教师、2名女教师,高三数学组计划从两个学习组中随机各选2名教师参加学校的挑战答题比赛.

1)求选出的4名选手中恰好有一名女教师的选派方法数;

2)记X为选出的4名选手中女教师的人数,求X的概率分布和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

(1)求的单调区间;

(2)当时,求证:对于恒成立;

(3)若存在,使得当时,恒有成立,试求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】根据气象部门预报,在距离某个码头A南偏东45°方向的600km处的热带风暴中心B正以30km/h的速度向正北方向移动,距离风暴中心450km以内的地区都将受到影响,从现在起经过___小时后该码头A将受到热带风暴的影响(精确到0.01).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】支付宝和微信支付已经成为现如今最流行的电子支付方式,某市通过随机询问100名居民(男女居民各50名)喜欢支付宝支付还是微信支付,得到如下的列联表:

支付宝支付

微信支付

40

10

25

25

附表及公式:.

P

0.050

0.010

0.001

k

3.841

6.635

10.828

则下面结论正确的是(

A.以上的把握认为支付方式与性别有关

B.在犯错误的概率超过的前提下,认为支付方式与性别有关

C.在犯错误的概率不超过的前提下,认为支付方式与性别有关

D.以上的把握认为支付方式与性别无关

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在中,两直角边的长分别为,以的中点为原点,所在直线为轴,以的垂直平分线为轴建立平面直角坐标系,椭圆为焦点,且经过点.

1)求椭圆的方程;

2)直线相交于两点,在轴上是否存在点,使得为等边三角形,若存在,求出直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在上的函数满足: , .若方程有5个实根,则正数a的取值范围是( )

A. B. C. D.

查看答案和解析>>

同步练习册答案