某投资人打算投资甲、乙两个项目,根据预测,甲、乙项目可能的最大盈利率分别为100%和50%,可能的最大亏损率分别为30%和10%,投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元,问投资人对甲、乙两个项目各投资多少万元,才能使可能的盈利最大?
解:设投资人分别用x万元、y万元投资甲、乙两个项目,由题意知
目标函数z=x+0.5y.
上述不等式组表示的平面区域如图所示,阴影部分(含边界)即可行域.
作直线l0:x+0.5y=0,并作平行于直线l0的一组直线x+0.5y=z,z∈R,与可行域相交,其中有一条直线经过可行域上的M点,且与直线x+0.5y=0的距离最大,这里M点是直线x+y=10和0.3x+0.1y=1.8的交点.
由
,可得x=4,y=6
∵7>0,∴当x=4,y=6时,z取得最大值.
答:投资人用4万元投资甲项目、6万元投资乙项目,才能在确保亏损不超过1.8万元的前提下,使可能的盈利最大.
分析:设投资人分别用x万元、y万元投资甲、乙两个项目,确定不等式与目标函数,作出平面区域,即可求得结论.
点评:本题考查线性规划知识,考查利用数学知识解决实际问题,考查学生分析解决问题的能力,属于中档题.