8£®¶¨ÒåÐÐÁÐʽÔËË㣺$|\begin{array}{l}{{a}_{1}}&{{a}_{2}}\\{{a}_{3}}&{{a}_{4}}\end{array}|$=a1a4-a2a3£¬Èô½«º¯Êýf£¨x£©=$|\begin{array}{l}{sinx}&{cosx}\\{1}&{\sqrt{3}}\end{array}|$µÄͼÏóÏòÓÒƽÒƦգ¨¦Õ£¾0£©¸öµ¥Î»ºó£¬ËùµÃͼÏó¶ÔÓ¦µÄº¯ÊýΪÆ溯Êý£¬ÔòmµÄ×îСֵÊÇ£¨¡¡¡¡£©
A£®$\frac{¦Ð}{6}$B£®$\frac{¦Ð}{3}$C£®$\frac{2¦Ð}{3}$D£®$\frac{5¦Ð}{6}$

·ÖÎö ¸ù¾Ýж¨ÒåÇóµÃf£¨x£©µÄ½âÎöʽ£¬ÔÙÀûÓú¯Êýy=Asin£¨¦Øx+¦Õ£©µÄͼÏó±ä»»¹æÂÉ£¬ÕýÏÒº¯ÊýµÄͼÏóµÄ¶Ô³ÆÐÔ£¬ÇóµÃ¦ÕµÄ×îСֵ£®

½â´ð ½â£º½«º¯Êýf£¨x£©=$|\begin{array}{l}{sinx}&{cosx}\\{1}&{\sqrt{3}}\end{array}|$=$\sqrt{3}$sinx-cosx=2sin£¨x-$\frac{¦Ð}{6}$£©µÄͼÏóÏòÓÒƽÒƦգ¨¦Õ£¾0£©¸öµ¥Î»ºó£¬
¿ÉµÃy=2sin£¨x-¦Õ-$\frac{¦Ð}{6}$£©µÄͼÏó£®
¸ù¾ÝËùµÃͼÏó¶ÔÓ¦µÄº¯ÊýΪÆ溯Êý£¬¿ÉµÃ¦Õ+$\frac{¦Ð}{6}$=k¦Ð£¬k¡ÊZ£¬¼´¦Õ=k¦Ð-$\frac{¦Ð}{6}$£¬k¡ÊZ£¬
ËùÒÔ¦ÕµÄ×îСֵÊÇ$\frac{5¦Ð}{6}$£¬
¹ÊÑ¡£ºD£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éж¨Ò壬º¯Êýy=Asin£¨¦Øx+¦Õ£©µÄͼÏó±ä»»¹æÂÉ£¬ÕýÏÒº¯ÊýµÄͼÏóµÄ¶Ô³ÆÐÔ£¬ÊôÓÚ»ù´¡Ì⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÒÑÖªº¯Êýf£¨x£©=2cos2¦Øx+2sin¦Øxcos¦Øx£¨¦Ø£¾0£©µÄ×îСÕýÖÜÆÚΪ¦Ð£®
£¨1£©Çóf£¨$\frac{¦Ð}{3}$£©µÄÖµ£»
£¨2£©Çóº¯Êýf£¨x£©µÄµ¥µ÷µÝÔöÇø¼ä£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®cos$\frac{5¦Ð}{3}$µÈÓÚ£¨¡¡¡¡£©
A£®-$\frac{\sqrt{3}}{2}$B£®-$\frac{1}{2}$C£®$\frac{1}{2}$D£®$\frac{\sqrt{3}}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖªsin¦Á=$\frac{4}{5}$£¬¦Á¡Ê£¨$\frac{¦Ð}{2}$£¬¦Ð£©
£¨¢ñ£©Çósin£¨¦Á-$\frac{¦Ð}{4}$£©µÄÖµ£»
£¨¢ò£©Çótan2¦ÁµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®º¯Êýf£¨x£©=log2x-$\frac{1}{x-1}$µÄÁãµã¸öÊýÊÇ£¨¡¡¡¡£©
A£®0B£®1C£®2D£®3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®ÈçͼËùʾ£¬ÔÚ¡÷ABCÖУ¬µãOÊÇBCµÄÖе㣬¹ýµãOµÄÖ±Ïß·Ö±ð½»Ö±ÏßAB£¬ACÓÚ²»Í¬µÄÁ½µãM£¬N£¬Èô$\overrightarrow{AB}$=$\frac{3}{5}$$\overrightarrow{AM}$£¬$\overrightarrow{AC}$=m$\overrightarrow{AN}$£¬ÔòmµÄֵΪ$\frac{7}{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÏÂÁк¯ÊýÔÚÇø¼ä£¨-¡Þ£¬0£©ÉÏÊÇÔöº¯ÊýµÄÊÇ£¨¡¡¡¡£©
A£®f£¨x£©=x2-4xB£®g£¨x£©=3x+1C£®h£¨x£©=3-xD£®t£¨x£©=tanx

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®£¨1£©ÒÑÖªº¯Êýf£¨x£©=$\frac{x£¨1-{x}^{2}£©}{{x}^{2}+1}$£¬x¡Ê[$\frac{1}{2}$£¬1]£¬Çóf£¨x£©µÄ×î´óÖµ£®
£¨2£©ÒÑÖªº¯Êýg£¨x£©=$\frac{ax+b}{{x}^{2}+c}$ÊǶ¨ÒåÔÚRÉϵÄÆ溯Êý£¬ÇÒµ±x=1ʱȡµÃ¼«´óÖµ1£®
¢ÙÇóg£¨x£©µÄ±í´ïʽ£»
¢ÚÈôx1=$\frac{1}{2}$£¬xn+1=g£¨xn£©£¬n¡ÊN£¬ÇóÖ¤£º$\frac{£¨{x}_{2}-{x}_{1}£©^{2}}{{x}_{1}{x}_{2}}$+$\frac{£¨{x}_{3}-{x}_{2}£©^{2}}{{x}_{3}{x}_{2}}$+¡­+$\frac{£¨{x}_{n+1}-{x}_{n}£©^{2}}{{x}_{n}{x}_{n+1}}$¡Ü10£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÒÑÖª$\overrightarrow{e_1}£¬\overrightarrow{e_2}$ÊÇƽÃæÉϵÄÒ»×é»ùµ×£¬
£¨1£©ÒÑÖª$\overrightarrow{AB}=2\overrightarrow{e_1}+\overrightarrow{e_2}$£¬$\overrightarrow{BE}=-\overrightarrow{e_1}+¦Ë\overrightarrow{e_2}$£¬$\overrightarrow{EC}=-2\overrightarrow{e_1}+\overrightarrow{e_2}$£¬ÇÒA£¬E£¬CÈýµã¹²Ïߣ¬ÇóʵÊý¦ËµÄÖµ£»
£¨2£©Èô$\overrightarrow{e_1}£¬\overrightarrow{e_2}$ÊǼнÇΪ60¡ãµÄµ¥Î»ÏòÁ¿£¬$\overrightarrow a=\overrightarrow{e_1}+¦Ë\overrightarrow{e_2}$£¬$\overrightarrow b=-2¦Ë\overrightarrow{e_1}-\overrightarrow{e_2}$£¬µ±-3¡Ü¦Ë¡Ü5ʱ£¬Çó$\overrightarrow a•\overrightarrow b$µÄ×î´óÖµ£¬×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸