精英家教网 > 高中数学 > 题目详情
已知奇函数f(x)是定义在(-3,3)上的减函数,且满足不等式f(x-3)+f(x2-3)<0,则不等式解集
(2,
6
(2,
6
分析:利用函数是奇函数,将不等式转化为f(x2-3)<-f(x-3)=f(3-x),然后利用函数是减函数,进行求解.
解答:解:因为f(x)是奇函数,所以不等式f(x-3)+f(x2-3)<0等价为f(x2-3)<-f(x-3)=f(3-x),
又f(x)是定义在(-3,3)上的减函数,
所以
-3<x2-3<3
-3<x-3<3
x2-3>3-x
,即
0<x2<6
0<x<6
x2+x-6>0
,解得2<x<
6

即不等式的解集为(2,
6
).
故答案为:(2,
6
).
点评:本题主要考查函数奇偶性和单调性的应用,主要定义域的限制.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知奇函数f(x)是定义在(-1,1)上的增函数,如果f(1-a)+f(1-a2)<0,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

15、已知奇函数f(x)是定义在R上的增函数,数列xn是一个公差为2的等差数列,满足f(x8)+f(x9)+f(x10)+f(x11)=0,则x2011的值等于
4003

查看答案和解析>>

科目:高中数学 来源: 题型:

已知奇函数f(x)是定义在[-1,1]上的增函数,则不等式f(x-1)+f(1-x2)<0的解集为
(1,
2
]
(1,
2
]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知奇函数f(x)是定义在[-1,1]上的增函数,且f(x-1)+f(3x-2)<0,则x的取值范围为
1
3
≤x<
3
4
1
3
≤x<
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知奇函数f(x)是定义在R上的增函数,且f(x-1)+f(3x-1)<0,则x的取值范围为
x<
1
2
x<
1
2

查看答案和解析>>

同步练习册答案