精英家教网 > 高中数学 > 题目详情
5.在区间(0,6)上随机取一个数x,log2x的值介于0到2之间的概率为$\frac{1}{2}$.

分析 本题利用几何概型求概率.先解对数不等式0≤log2x≤2,再利用解得的区间长度与区间(0,6)的长度求比值即得.

解答 解:利用几何概型,其测度为线段的长度.
∵0≤log2x≤2得1≤x≤4,
∴log2x的值介于0到2之间的概率为:
P(log2x的值介于0到2之间)=$\frac{4-1}{6-0}$=$\frac{1}{2}$.
故答案为:$\frac{1}{2}$.

点评 本题主要考查了与长度有关的几何概型的求解,属于基础试题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.设函数f(x)=$\left\{\begin{array}{l}{{2}^{x}-a,x<1}\\{4(x-a)(x-2a),x≥1}\end{array}\right.$若f(x)恰有2个零点,则实数a的取值范围$\frac{1}{2}≤a<1$或a≥2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设曲线$y=\frac{2}{x-1}$在点(3,1)处的切线与直线ax-y+1=0垂直,则a=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.定义函数fk(x)=$\frac{alnx}{{x}^{k}}$为f(x)的k阶函数.
(1)求f(x)的一阶函数f1(x)的单调区间;
(2)讨论方程f2(x)=1的解的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.以直角坐标系xOy的原点为极点,x轴的正半轴为极轴,且两坐标系取相同的长度单位,已知点N的极坐标为(2,$\frac{π}{2}$),M是曲线C:p2•(cos2θ-sin2θ)+1=0上任意一点,点P满足$\overrightarrow{OP}$=$\overrightarrow{OM}$+$\overrightarrow{ON}$,设点P的轨迹为曲线Q.
(1)求曲线Q的直角坐标方程;
(2)若直线l:$\left\{\begin{array}{l}{x=-2-t}\\{y=2-\sqrt{3}t}\end{array}\right.$(t为参数)与曲线Q的交点为A、B,求|AB|的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,四棱锥P-ABCD的底面ABCD为一直角梯形,其中BA⊥AD,CD⊥AD,CD=AD=2AB=2,PA⊥底面ABCD,E是PC的中点.
(1)证明:直线BE∥平面PAD;
(2)若直线BE⊥平面PCD.
①求PA的长;
②求异面直线PD与BC所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.数列{an}中,a1=1,对任意n∈N*,有an+1=$\frac{{a}_{n}}{1+{a}_{n}}$.
(1)求a4
(2)求该数列的通项公式an
(3)若bn=an•an+1,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知数列{an}的前n项的乘积为Tn=3${\;}^{{n}^{2}}$(n∈N*),则数列{an}的前n项的和为(  )
A.$\frac{3}{2}$(3n-1)B.$\frac{9}{2}$(3n-1)C.$\frac{3}{8}$(9n-1)D.$\frac{9}{8}$(9n-1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知数列{an}是等差数列,且a2=7,a5=16,数列{bn}是各项为正数的数列,b1=2且bn+1-2bn=0.
(1)求{an}、{bn}的通项公式;
(2)设cn=anbn,求数列{cn}的前n项和Sn

查看答案和解析>>

同步练习册答案