精英家教网 > 高中数学 > 题目详情

【题目】已知函数 在x1处取得极大值,在x2处取得极小值,满足x1∈(﹣1,0),x2∈(0,1),则 的取值范围是(  )
A.
B.(0,1)
C.
D.[1,3]

【答案】B
【解析】解:f′(x)=x2+ax+b;

根据极值的概念知,x1,x2是方程f′(x)=0的两个实数根;

∴根据韦达定理得x1+x2=﹣a,x1x2=b;

∵x1∈(﹣1,0),x2∈(0,1);

∴﹣1<a<1,﹣1<b<0;

如图所示:

的几何意义表示平面区域内的点和A(﹣2,﹣1)的直线的斜率,

结合图象 ∈(0,1),

所以答案是:B.

【考点精析】利用函数的极值与导数对题目进行判断即可得到答案,需要熟知求函数的极值的方法是:(1)如果在附近的左侧,右侧,那么是极大值(2)如果在附近的左侧,右侧,那么是极小值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 ,则函数y=f(x)的大致图象为(  )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】第五届北京农业嘉年华于2017年3月11日至5月7日在昌平区兴寿镇草莓博览园中举办,设置“三馆两园一带一谷一线”八大功能板块.现安排六名志愿者去其中的“三馆两园”参加志愿者服务工作,若每个“馆”与“园”都至少安排一人,则不同的安排方法种数为(  )
A.C A
B.5C A
C.5A
D.C A

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: 的离心率为 ,左焦点为F(﹣1,0),过点D(0,2)且斜率为k的直线l交椭圆于A,B两点.
(1)求椭圆C的标准方程;
(2)在y轴上,是否存在定点E,使 恒为定值?若存在,求出E点的坐标和这个定值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】共享单车是指企业在校园、地铁站点、公交站点、居民区、商业区、公共服务区等提供自行车单车共享服务,是共享经济的一种新形态.一个共享单车企业在某个城市就“一天中一辆单车的平均成本(单位:元)与租用单车的数量(单位:千辆)之间的关系”进行调查研究,在调查过程中进行了统计,得出相关数据见下表:

租用单车数量x(千辆)

2

3

4

5

8

每天一辆车平均成本y(元)

3.2

2.4

2

1.9

1.7

根据以上数据,研究人员分别借助甲、乙两种不同的回归模型,得到两个回归方程,方程甲: (1)= +1.1,方程乙: (2)= +1.6.
(1)为了评价两种模型的拟合效果,完成以下任务:
①完成下表(计算结果精确到0.1)(备注: =yi 称为相应于点(xi , yi)的残差(也叫随机误差);

租用单车数量x(千辆)

2

3

4

5

8

每天一辆车平均成本y(元)

3.2

2.4

2

1.9

1.7

模型甲

估计值 (1)

2.4

2.1

1.6

残差 (1)

0

﹣0.1

0.1

模型乙

估计值 (2)

2.3

2

1.9

残差 (2)

0.1

0

0

②分别计算模型甲与模型乙的残差平方和Q1及Q2 , 并通过比较Q1 , Q2的大小,判断哪个模型拟合效果更好.
(2)这个公司在该城市投放共享单车后,受到广大市民的热烈欢迎,共享单车常常供不应求,于是该公司研究是否增加投放.根据市场调查,这个城市投放8千辆时,该公司平均一辆单车一天能收入10元,6元收入的概率分别为0.6,0.4;投放1万辆时,该公司平均一辆单车一天能收入10元,6元的概率分别为0.4,0.6.问该公司应该投放8千辆还是1万辆能获得更多利润?(按(1)中拟合效果较好的模型计算一天中一辆单车的平均成本,利润=收入﹣成本).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱锥P﹣ABC中,△ABC是正三角形,△ACP是直角三角形,∠ABP=∠CBP,AB=BP.

(1)证明:平面ACP⊥平面ABC;
(2)若E为棱PB与P不重合的点,且AE⊥CE,求AE与平面ABC所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若ax2+bx+c<0的解集为{x|x<-2,或x>4},则对于函数f(x)=ax2+bx+c应有( )
A.f(5)<f(2)<f(-1)
B.f(5)<f(-1)<f(2)
C.f(-1)<f(2)<f(5)
D.f(2)<f(-1)<f(5)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有如下四个命题:
p1x0∈(0,+∞), <
p2x0
p3x∈R,2x>x2
p4x∈(1,+∞),
其中真命题是( )
A.p1 , p3
B.p1 , p4
C.p2 , p3
D.p2 , p4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中,真命题的个数为①对任意的a,b∈R,a>b是a|a|>b|b|的充要条件;②在△ABC中,若A>B,则sinA>sinB;③非零向量 ,若 ,则向量 与向量 的夹角为锐角;④ .(
A.1
B.2
C.3
D.4

查看答案和解析>>

同步练习册答案