精英家教网 > 高中数学 > 题目详情

【题目】中,内角的对边分别是,且满足:.

)求角的大小;

(Ⅱ)若,求的最大值.

【答案】(Ⅰ);(Ⅱ)2.

【解析】

)运用正弦定理实现角边转化,然后利用余弦定理,求出角的大小;

(Ⅱ)方法1:由(II)及,利用余弦定理,可得,再利用基本不等式,可求出的最大值;

方法2:利用正弦定理实现边角转化,利用两角和的正弦公式和辅助角公式,利用正弦型函数的单调性,可求出的最大值;

I)由正弦定理得:

因为,所以

所以由余弦定理得:

又在中,

所以.

II)方法1:由(I)及,得

,即

因为,(当且仅当时等号成立)

所以.

(当且仅当时等号成立)

的最大值为2.

方法2:由正弦定理得

因为,所以

的最大值为2(当时).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】现有甲、乙等5人排成一排照相,按下列要求各有多少种不同的排法?求:

1)甲、乙不能相邻;

2)甲、乙相邻且都不站在两端;

3)甲、乙之间仅相隔1人;

4)按高个子站中间,两侧依次变矮(五人个子各不相同)的顺序排列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)若,求处的切线方程;

(Ⅱ)若对任意均有恒成立,求实数的取值范围;

(Ⅲ)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当时,求函数的单调区间;

(2)若方程在区间(0,+)上有实数解求实数a的取值范围

(3)若存在实数,且,使得,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为庆祝国庆节,某中学团委组织了歌颂祖国,爱我中华知识竞赛,从参加考试的学生中抽出60名,将其成绩(成绩均为整数)分成[4050)[5060)[90100)六组,并画出如图所示的部分频率分布直方图,观察图形,回答下列问题:

1)求第四组的频率,并补全这个频率分布直方图;

2)请根据频率分布直方图,估计样本的众数、中位数和平均数.(每组数据以区间的中点值为代表)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知矩形ABCD所在平面垂直于直角梯形ABPE所在平面于直线AB,且ABBP2,AD=AE=1,AEAB,且AEBP

(1)求平面PCD与平面ABPE所成的二面角的余弦值;

(2)线段PD上是否存在一点N,使得直线BN与平面PCD所成角的正弦值等于?若存在,试确定点N的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某帆船中心比赛场馆区的海面上每天海浪高度y(米)可看作时间(单位:小时)的函数,记作,经过长期观测,的曲线可近似地看成是函数,下列是某日各时的浪高数据.

t/小时

0

3

6

9

12

15

18

21

24

y/

1

1

1

1

1)根据以上数据,求出的解析式;

2)为保证安全比赛时的浪高不能高于米,则在一天中的哪些时间可以进行比赛.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,己知是椭圆的左、右焦点,直线经过左焦点,且与 椭圆两点,的周长为.

(Ⅰ)求椭圆的标准方程;

(Ⅱ)是否存在直线,使得为等腰直角三角形?若存在,求出直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)当时,讨论的单调性;

(2)设时,若对任意,存在使,求实数取值.

查看答案和解析>>

同步练习册答案