精英家教网 > 高中数学 > 题目详情
16.若过点P(5,-2)的双曲线的两条渐近线方程为x-2y=0和x+2y=0,则该双曲线的实轴长为6.

分析 利用共渐近线双曲线系方程设为x2-4y2=λ(λ≠0),求得λ,再求2a.

解答 解:设所求的双曲线方程为x2-4y2=λ(λ≠0),
将P(5,-2)代入,得λ=9,
∴x2-4y2=9,∴a=3,实轴长2a=6,
故答案为:6.

点评 利用共渐近线双曲线系方程可为解题避免分类讨论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的一个焦点为F1,若椭圆上存在一个点P,满足以椭圆短轴为直径的圆与线段PF1相切于该线段的中点,则椭圆的离心率为(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{2}{3}$C.$\frac{5}{9}$D.$\frac{{\sqrt{5}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如果点P(sinθcosθ,3sinθ)位于第三象限,则角θ所在的象限是(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.计算:
(1)lg5lg20-lg2lg50-lg25.
(2)(2${a}^{\frac{2}{3}}$${b}^{\frac{1}{2}}$)(-6${a}^{\frac{1}{2}}$${b}^{\frac{1}{3}}$ )÷(-3${a}^{\frac{1}{6}}$${b}^{\frac{5}{6}}$ )

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.O是坐标原点,点A(-1,1),点P(x,y)为平面区域$\left\{\begin{array}{l}{x≥0}\\{2x-y≤0}\\{y≤kx+1}\end{array}\right.$的一个动点,函数f(λ)=|$\overrightarrow{OP}$-λ$\overrightarrow{OA}$|(λ∈R)的最小值为M,若M≤$\frac{3}{2}$$\sqrt{2}$恒成立,则k的取值范围是(  )
A.k≤1B.-1≤k≤1C.0≤k≤3D.k≤1或≥3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如果偶函数f(x)在[0,+∞)上是增函数且最小值是2,那么f(x)在(-∞,0]上是(  )
A.减函数且最小值是2B.减函数且最大值是2
C.增函数且最小值是2D.增函数且最大值是2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=Acos(wx+Φ)(A>0,w>0,|Φ|≤$\frac{π}{2}$)的部分图象如图所示:
(1)求f(x)的表达式;
(2)若cosθ=$\frac{3}{5}$,θ∈($\frac{3}{2}$π,2π),求f(2θ+$\frac{π}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知|$\overrightarrow{a}$|=$\sqrt{2}$,|$\overrightarrow{b}$|=1,$\overrightarrow a$与$\overrightarrow b$的夹角为45°,求使向量$(2\overrightarrow a-λ\overrightarrow b)$与$(λ\overrightarrow a-3\overrightarrow b)$的夹角是锐角的实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.某观察站C与两灯塔A、B的距离分别为200米和400米,测得灯塔A在观察站C北偏东30°,灯塔B在观察站C南偏东30°处,则两灯塔A、B间的距离为(  )
A.400米B.200$\sqrt{5}$米C.200$\sqrt{3}$米D.200$\sqrt{7}$米

查看答案和解析>>

同步练习册答案