精英家教网 > 高中数学 > 题目详情
17.已知复数z1=3-i,z2=1+i,$\overline{{z}_{1}}$是z1的共轭复数,则$\frac{\overline{{z}_{1}}}{{z}_{2}}$=(  )
A.1+iB.1-iC.2+iD.2-i

分析 由已知求出$\overline{{z}_{1}}$,代入$\frac{\overline{{z}_{1}}}{{z}_{2}}$,然后利用复数代数形式的乘除运算化简得答案.

解答 解:∵z1=3-i,z2=1+i,
∴$\overline{{z}_{1}}$=3+i,
则$\frac{\overline{{z}_{1}}}{{z}_{2}}$=$\frac{3+i}{1+i}=\frac{(3+i)(1-i)}{(1+i)(1-i)}=\frac{4-2i}{2}=2-i$.
故选:D.

点评 本题考查复数代数形式的乘除运算,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.函数y=$\frac{2}{\sqrt{x-4}}$的值域是(  )
A.RB.(0,+∞)C.(-∞,4)D.(-∞,4)∪(4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知角α终边上一点P(-4,3),求$\frac{{sin(α-2π)+cos(\frac{π}{2}+α)sin(-π-α)}}{{cos(π-α)+cos(\frac{11π}{2}-α)sin(\frac{3π}{2}+α)}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列函数中是偶函数,且又在区间(-∞,0)上是增函数的是(  )
A.y=x2B.y=x-2C.$y={(\frac{1}{4})^{-|x|}}$D.$y={log_3}{x^{\frac{5}{6}}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设F1、F2分别是椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$的左、右焦点,若椭圆上存在点A,使∠F1AF2=90°,且|AF1|=3|AF2|,则椭圆离心率为(  )
A.$\frac{{\sqrt{5}}}{4}$B.$\frac{{\sqrt{10}}}{4}$C.$\frac{{\sqrt{15}}}{4}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.一块石材表示的几何体的三视图如图所示,将该石材切削、打磨,加工成球,则能得到的最大球的半径等于2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知$A=\{x||{x-2}|<1\},B=\{y|y=\frac{2x-1}{x+1},x∈A\}$,则A∩B=(  )
A.$(\frac{1}{2},\frac{5}{4})$B.$(\frac{7}{4},3)$C.$(1,\frac{5}{4})$D.$(\frac{1}{2},1)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆$\frac{{x}^{2}}{2}$+y2=1上两个不同的点A,B关于直线$y=mx+\frac{1}{2}(m≠0)$对称.
(1)若已知$C(0,\frac{1}{2})$,M为椭圆上动点,证明:$|{MC}|≤\frac{{\sqrt{10}}}{2}$;
(2)求实数m的取值范围;
(3)求△AOB面积的最大值(O为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在△ABC中,角A,B,C的对边分别是a,b,c,已知b=2,且cos2B+cosB+cos(A-C)=1,则a+2c的最小值为$4\sqrt{2}$.

查看答案和解析>>

同步练习册答案