精英家教网 > 高中数学 > 题目详情

【题目】为方便市民休闲观光,市政府计划在半径为200米,圆心角为的扇形广场内(如图所示),沿边界修建观光道路,其中分别在线段上,且两点间距离为定长.

1)当时,求观光道段的长度;

2)为提高观光效果,应尽量增加观光道路总长度,试确定图中两点的位置,使观光道路总长度达到最长?并求出总长度的最大值.

【答案】12)当两点各距60米处时,观光道路总长度达到最长,最长为.

【解析】试题分析:(1)在,由正弦定理易得段的长度;(2)由题意,根据余弦定理可得,应用基本不等式可得当且仅当时,取得最大值,

试题解析:(1)在中,由已知及正弦定理得

.

2)设

中,,即

,当且仅当时,取得最大值,

两点各距60米处时,观光道路总长度达到最长,最长为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某校从高年级学生中随机抽取50名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),…,[90,100],得到如图所示的频率分布直方图.

(1)若该校高年级共有学生1000人,试估计成绩不低于60分的人数;

(2)该校高二年级全体学生期中考试成绩的众数、中位数和平均数的估计值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有编号分别为1,2,3,4,5的五道不同的政治题和编号分别为6,7,8,9的四道不同的历史题.甲同学从这九道题中一次性随机抽取两道题,每道题被抽到的概率是相等的,用符号(x,y)表示事件抽到的两道题的编号分别为x,y,且x<y..

(1)问有多少个基本事件,并列举出来;

(2)求甲同学所抽取的两道题的编号之和小于17但不小于11的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax2+bx(a0)的导函数f(x)=-2x+7,数列{an}的前n项和为Sn,点Pn(n,Sn)(nN*)均在函数y=f(x)的图象上,求数列{an}的通项公式及Sn的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两位数学老师组队参加某电视台闯关节目,共3关,甲作为嘉宾参与答题,若甲回答错误,乙作为亲友团在整个通关过程中至多只能为甲提供一次帮助机会,若乙回答正确,则甲继续闯关,若某一关通不过,则收获前面所有累积奖金.约定每关通过得到奖金2000元,设甲每关通过的概率为,乙每关通过的概率为,且各关是否通过及甲、乙回答正确与否均相互独立.

1求甲、乙获得2000元奖金的概率;

2表示甲、乙两人获得的奖金数,求随机变量的分布列和数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数的对称轴为.

1)求函数的最小值及取得最小值时的值;

2)试确定的取值范围,使至少有一个实根;

3)当时,,对任意恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】网络购物已经被大多数人接受,随着时间的推移,网络购物的人越来越多,然而也有部分人对网络购物的质量和信誉产生怀疑。对此,某新闻媒体进行了调查,在所有参与调查的人中,持“支持”和“不支持”态度的人数如下表所示:

年龄 态度

支持

不支持

20岁以上50岁以下

800

200

50岁以 (含50岁)

100

300

(1)在所有参与调查的人中,用分层抽样的方法抽取个人,已知从持“支持”态度的人中抽取了9人,求的值;

(2)是否有99.9%的把握认为支持网络购物与年龄有关?

参考数据:

,其中

0.05

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,曲线在原点处有公共切线

I为函数的极大值点,求的单调区间表示

II,求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1求函数的单调区间;

2若存在使得是自然对数的底数,求实数的取值范围

查看答案和解析>>

同步练习册答案