精英家教网 > 高中数学 > 题目详情

【题目】已知两个定点,动点满足.设动点的轨迹为曲线,直线.

(1)求曲线的轨迹方程;

(2)若与曲线交于不同的两点,且为坐标原点),求直线的斜率;

(3)若是直线上的动点,过作曲线的两条切线,切点为,探究:直线是否过定点.

【答案】(1)(2)(3)线过定点

【解析】试题分析:(1)设点坐标为,由,得:

整理即可得轨迹方程;(2)依题意圆心到直线的距离即可解得直线的斜率;(3)由题意可知: 四点共圆且在以为直径的圆上,设,其方程为,即: ,又在曲线上, ,即,由可解得定点坐标.

试题解析:

(1)设点坐标为

,得:

整理得:曲线的轨迹方程为

2)依题意圆心到直线的距离

.

3)由题意可知: 四点共圆且在以为直径的圆上,设

其方程为,即:

在曲线上,

,由

直线过定点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx﹣ (a>0)
(1)若函数f(x)在x=2处的切线与x轴平行,求实数a的值;
(2)讨论函数f(x)在区间[1,2]上的单调性;
(3)证明: >e.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在[﹣2,2]上的函数f(x)满足f(x)+f(﹣x)=0,且 ,若f(1﹣t)+f(1﹣t2)<0,则实数t的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在实数集R中定义一种运算“*”,对任意给定的a,b∈R,a*b为唯一确定的实数,且具有性质: ⑴对任意a,b∈R,a*b=b*a;(2)对任意a∈R,a*0=a;(3)对任意a,b∈R,(a*b)*c=c*(ab)+(a*c)+(c*b)﹣2c.关于函数f(x)=(3x)* 的性质,有如下说法:
①函数f(x)的最小值为3;
②函数f(x)为奇函数;
③函数f(x)的单调递增区间为(﹣∞,﹣ ),( ,+∞).
其中所有正确说法的个数为(
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是定义在上的奇函数,当时,,则不等式的解集为(

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)将函数化成的形式,并求函数的增区间;

(2)若函数满足:对任意都有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直四棱柱中,底面是边长为2的正方形, 分别为线段 的中点.

(1)求证: ||平面

(2)四棱柱的外接球的表面积为,求异面直线所成的角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】本题满分16某批发公司批发某商品,每件商品进价80元,批发价120元,该批发商为鼓励经销商批发,决定当一次批发量超过100个时,每多批发一个,批发的全部商品的单价就降低0.04元,但最低批发价不能低于102元.

1当一次订购量为多少个时,每件商品的实际批发价为102元?

2当一次订购量为个, 每件商品的实际批发价为元,写出函数的表达式;

3根据市场调查发现,经销商一次最大定购量为个,则当经销商一次批发多少个零件时,该批发公司可获得最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市由甲、乙两家乒乓球俱乐部,两家设备和服务都很好,但收费方式不同,甲家每张球台每小时5元;乙家按月计费,一个月中小时以内(含小时)每张球台元,超过小时的部分每张球台每小时.某公司准备下个月从两家中的一家租一张球台开展活动,活动时间不少于小时,也不超过小时,设在甲家租一张球台开展活动小时的收费为元,在乙家租一张球台开展活动小时的收费为.

(1)试分别写出的解析式;

(2)选择哪家比较合算?请说明理由.

查看答案和解析>>

同步练习册答案