精英家教网 > 高中数学 > 题目详情
数列{an}的通项公式是an=
2n
2n+1
(n∈N*),那么an与an+1的大小关系是(  )
分析:化简数列{an}的通项公式为an=1-
1
2n+1
,显然当n增大时,an的值增大,故数列{an}是递增数列,由此得到结论.
解答:解:∵数列{an}的通项公式是an=
2n
2n+1
=
2n+1-1
2n+1
=1-
1
2n+1
,(n∈N*),显然当n增大时,an的值增大,
故数列{an}是递增数列,故有an<an+1
故选B.
点评:本题主要考查数列的函数特性,化简数列{an}的通项公式为an=1-
1
2n+1
,是解题的关键,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

数列{an}的前n项和Sn=2n2+n-1,则数列{an}的通项公为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,Sn是数列{an}的前n项和,且满足:2Sn+1+an+1+4Sn+1Sn=0,
(1)求数列{an}的通项公an
(2)若记bn=(2n+1)•(
1Sn
+2)
,Tn为数列{bn}的前n项和,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列{an}中,a1=1,Sn是数列{an}的前n项和,且满足:2Sn+1+an+1+4Sn+1Sn=0,
(1)求数列{an}的通项公an
(2)若记数学公式,Tn为数列{bn}的前n项和,求Tn

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

数列{an}的前n项和Sn=2n2+n-1,则数列{an}的通项公为______.

查看答案和解析>>

科目:高中数学 来源:2002-2003学年北京市朝阳区高一(上)期末数学试卷(解析版) 题型:填空题

数列{an}的前n项和Sn=2n2+n-1,则数列{an}的通项公为   

查看答案和解析>>

同步练习册答案