【题目】如图,椭圆C:(),,分别是椭圆C的左,右焦点,点D在椭圆上,且,,的面积为.
(1)求椭圆C的方程;
(2)过的直线l与椭圆C交于M,N两点,在x轴上是否存在点A,使为常数?若存在,求出点A的坐标和这个常数;若不存在,请说明理由
【答案】(1)(2),常数为.
【解析】
(1)根据线段比例关系及面积,集合椭圆中关系,可得方程组,解方程即可求得椭圆的标准方程.
(2)假设存在点满足为常数.当斜率存在时,设出直线方程,并联立椭圆方程,由韦达定理表示出,进而表示出.根据平面向量数量积的坐标运算,结合系数比相同时为常数,即可求得的值,进而确定的值;当斜率不存在时,易得两个交点坐标,即可确定取的值时的值是否与斜率存在时的一致.
(1)椭圆C:(),,分别是椭圆C的左,右焦点,点在椭圆上,且,.
则点的坐标为,().代入椭圆方程可得,
解得.
又因为,的面积为.
所以 ,解得
所以椭圆的标准方程为.
(2)假设在轴上存在点A,使为常数,设.
当直线的斜率存在时,直线过,设..
则,化简可得,
所以.
所以,
则
,
因为为常数,
所以,解得,
此时
当直线的斜率不存在时,直线与椭圆的两个交点坐标分别为.
则
所以
当时,.
综上可知,在轴上存在点,使得为常数,该常数为.
科目:高中数学 来源: 题型:
【题目】袋子中放有大小和形状相同而颜色互不相同的小球若干个, 其中标号为0的小球1个, 标号为1的小球1个, 标号为2的小球2个, 从袋子中不放回地随机抽取2个小球, 记第一次取出的小球标号为,第二次取出的小球标号为.
(1) 记事件表示“”, 求事件的概率;
(2) 在区间内任取2个实数, 记的最大值为,求事件“”的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,曲线:,(为参数),将曲线上的所有点的横坐标缩短为原来的,纵坐标缩短为原来的后得到曲线,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为。
(1)求曲线的极坐标方程和直线l的直角坐标方程;
(2)设直线l与曲线交于不同的两点A,B,点M为抛物线的焦点,求的值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,底面是直角梯形,侧棱底面, 垂直于和,为棱上的点,,.
(1)若为棱的中点,求证://平面;
(2)当时,求平面与平面所成的锐二面角的余弦值;
(3)在第(2)问条件下,设点是线段上的动点,与平面所成的角为,求当取最大值时点的位置.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一商场对每天进店人数和商品销售件数进行了统计对比,得到如下表格:
人数 | 10 | 15 | 20 | 25 | 30 | 35 | 40 |
件数 | 4 | 7 | 12 | 15 | 20 | 23 | 27 |
(1)在答题卡给定的坐标系中画出表中数据的散点图,并由散点图判断销售件数与进店人数是否线性相关?(给出判断即可,不必说明理由);
(2)建立关于的回归方程(系数精确到0.01),预测进店人数为80时,商品销售的件数(结果保留整数).
(参考数据:,,,,,)
参考公式:,,其中,为数据的平均数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在四棱柱中,侧棱底面,平面,,,,,为棱的中点.
(1)证明:;
(2)求二面角的平面角的正弦值;
(3)设点在线段上,且直线与平面所成角的正弦值为,求线段的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图放置的边长为1的正方形沿轴滚动,点恰好经过原点.设顶点的轨迹方程是,则对函数有下列判断:①函数是偶函数;②对任意的,都有;③函数在区间上单调递减;④函数的值域是;⑤.其中判断正确的序号是__________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com