精英家教网 > 高中数学 > 题目详情

{an}为等差数列,且为数列{}的前n项和,设

(1)比较f(n)与f(n+1)的大小;

(2)若,在x∈[a,b]且对任意n>1,n∈N*恒成立,求实数a、b满足的条件。       

解:(1)an=n,f(n+1)- f(n)=S2(n+1- Sn+1-[ S2n- Sn]= S2(n+1- S2n- (Sn+1-Sn

= a2n+2+ a2n+1-an+1    

=-=>0

∴f(n+1)> f(n) 

(2)由上知:{ f(n)}为递增数列,只须log2x<12 f(2)成立,

f(2)= S4-S2=     

∴log2x<7,

∴0<x<128,

∴0<a<b<128   

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}为等差数列,Sn其前n项和,且a2=3a4-6,则S9等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若平面内共线的A、B、P三点满足条件,
OP
=a1
OA
+a4015
OB
,其中{an}为等差数列,则a2008等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}为等差数列,a4=2,a7=-4,那么数列{an}的通项公式为(  )
A、an=-2n+10
B、an=-2n+5
C、an=-
1
2
n+10
D、an=-
1
2
n+5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}为等差数列,若
a7a6
<-1,且它们的前n项和Sn有最大值,则使Sn>0的n的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}为等差数列,若a2=3,a1+a6=12,则a7+a8+a9=
 

查看答案和解析>>

同步练习册答案