精英家教网 > 高中数学 > 题目详情

如图所示,在多面体ABCDEFG中,平面ABC∥平面DEFGAD⊥平面DEFGBAACEDDGEFDG,且AC=1,ABEDEF=2,ADDG=4.
 
(1)求证:BE⊥平面DEFG
(2)求证:BF∥平面ACGD
(3)求二面角FBCA的余弦值.

(1)见解析(2)见解析(3)

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,正三棱柱所有棱长都是2,D棱AC的中点,E是棱的中点,AE交于点H.

(1)求证:平面
(2)求二面角的余弦值;
(3)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥O—ABCD中,底面ABCD是边长为1的正方形,OA⊥底面ABCD,OA=2,M为OA中点。

(1)求证:直线BD⊥平面OAC;
(2)求直线MD与平面OAC所成角的大小;
(3)求点A到平面OBD的距离。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图1,A,D分别是矩形A1BCD1上的点,AB=2AA1=2AD=2,DC=2DD1,把四边形A1ADD1沿AD折叠,使其与平面ABCD垂直,如图2所示,连接A1B,D1C得几何体ABA1­DCD1.

(1)当点E在棱AB上移动时,证明:D1E⊥A1D;
(2)在棱AB上是否存在点E,使二面角D1­EC­D的平面角为?若存在,求出AE的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,直三棱柱(侧棱垂直于底面的棱柱),底面,棱分别为的中点.

(1)求>的值;
(2)求证: 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在直三棱柱ABC­A1B1C1中,∠ACB=90°,∠BAC=30°,BC=1,A1AMCC1的中点.

(1)求证:A1BAM
(2)求二面角B­AM­C的平面角的大小..

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在中,,点在边上,设,过点,作。沿翻折成使平面平面;沿翻折成使平面平面

(1)求证:平面
(2)是否存在正实数,使得二面角的大小为?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在直三棱柱中,AA1=AB=BC=3,AC=2,D是AC的中点.

(1)求证:B1C∥平面A1BD;
(2)求平面A1DB与平面DBB1夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)如图,三棱柱ABC-A1B1C1中,CA=CB,AB="A" A1,∠BA A1=60°.

(Ⅰ)证明AB⊥A1C;
(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB,求直线A1C 与平面BB1C1C所成角的正弦值。

查看答案和解析>>

同步练习册答案