精英家教网 > 高中数学 > 题目详情
如图,将圆分成n个区域,用3种不同颜色给每一个区域染色,要求相邻区域颜色互异,把不同的染色方法种数记为an.

(1)        
(2)        .
(1)18;(2).

试题分析:(1)设三种不同颜色分别为甲、乙、丙三种.时,第1区域有3种选择, 第2区域有2种选择,第3区域有2种选择,因为第4区域要与第1区域颜色不同,故对第3区域的选择分类讨论:当第3区域与第1区域颜色相同时,第4区域有2种选择;当第3区域与第1区域颜色不同时,第4区域仅有1种选择.所以;(2)当将圆分成n个区域,用3种不同颜色给每一个区域染色时,第1区域有3种染色方案,第2区域至第区域有2种染色方案.此时考虑第区域也有2种涂色方案,在此情况下有两种情况:
情况一:第区域与第1区域同色,此时相当将这两区域重合,这时问题转化为3种不同颜色给圆上个区域涂色,即为种染色方案;
情况二:第区域与第1区域不同色,此时问题就转化为用3种不同颜色给圆上个区域染色,且相邻区域颜色互异,即此时的情况就是.根据分类原理可知,且满足初始条件:.
即递推公式为,由变形得,所以数列是以-1为公比的等比数列.所以,即.当时,易知有3种染色方法,即,不满足上述通项公式;当时,易知有种染色方法,即,满足上述通项公式;当时,易知有种染色方法,即,满足上述通项公式.
综上所述,.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知等差数列满足:,该数列的前三项分别加上l,l,3后顺次成为等比数列的前三项.
(I)求数列的通项公式;
(II)设,若恒成立,求c的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知为等比数列,是等差数列,
(Ⅰ)求数列的通项公式及前项和
(2)设,其中,试比较的大小,并加以证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设数列的前项和为,且.
(1)求数列的通项公式;
(2)设求证:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设数列的前n项和为,已知,,数列是公差为d的等差数列,.
(1)求d的值;
(2)求数列的通项公式;
(3)求证:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知是正数组成的数列,,且点在函数的图象上.
(Ⅰ)求数列的通项公式;
(Ⅱ)若数列满足,求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设函数,若数列是单调递减数列,则实数的取值范围为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若数列{an}的通项公式是,则该数列的第五项为(     )
A.1B.-1C.D.-

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

数列的首项为为等差数列且.,则(   )
A.B.C.D.

查看答案和解析>>

同步练习册答案