精英家教网 > 高中数学 > 题目详情
19.已知实数x,y满足不等式组$\left\{\begin{array}{l}{0≤x≤2}\\{x+y≥3}\\{x-y≥-1}\end{array}\right.$,其表示的区域的面积是1.

分析 先画出满足条件的平面区域,求出A、B、C的坐标,从而求出三角形的面积即可.

解答 解:画出满足条件的平面区域,如图示:

由$\left\{\begin{array}{l}{x=2}\\{x+y=3}\end{array}\right.$,解得B(2,1),
由$\left\{\begin{array}{l}{x=2}\\{x-y=-1}\end{array}\right.$,解得C(2,3),
由$\left\{\begin{array}{l}{x+y=3}\\{x-y=-1}\end{array}\right.$,解得A(1,2),
∴S阴影=$\frac{1}{2}$×2×1=1,
故答案为:1.

点评 本题考查了简单的线性规划问题,考查数形结合思想,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知x2+5x+1=0,求x3+$\frac{1}{{x}^{3}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设全集U=R,集合A={x|-4<x<4},B={x|x>3},求A∪B,∁U(A∪B)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.P为圆内接四边形ABCD的对角线交点,$\widehat{BC}$=$\widehat{CD}$,已知P点到AD的距离为2cm,则P点到AB的距离为2cm.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.cos(-$\frac{16π}{3}$)+sin(-$\frac{16π}{3}$)的值为-$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在四边形ABCD(A,B,C,D按逆时针排列)中,$\overrightarrow{AB}$=(6,1),$\overrightarrow{CD}$=(-2,-3),若有$\overrightarrow{BC}∥\overrightarrow{DA}$,又有$\overrightarrow{AC}⊥\overrightarrow{BD}$,求$\overrightarrow{BC}$的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}的前n项和为Sn,满足Sn+2n=an.求证数列{an+2}是等比数列,并求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知$\overrightarrow{a}$=(2cos2x,$\sqrt{3}$),$\overrightarrow{b}$=(1,sin2x),函数f(x)=$\overrightarrow{a}•\overrightarrow{b}$.
(1)求函数f(x)在(0,$\frac{π}{4}$)的取值范围;
(2)在△ABC中,a,b,c分别是角A,B,C的对边,且f(C)=3,c=1,S△ABC=$\frac{\sqrt{3}}{2}$,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设x>0,y>0,x+y=4,则$\frac{1}{x}$+$\frac{1}{y}$的最小值为1.

查看答案和解析>>

同步练习册答案