精英家教网 > 高中数学 > 题目详情

在(1+x)n的展开式中,奇数项的和为P,偶数项的和为Q,则(1-x2n=


  1. A.
    P•Q
  2. B.
    p2-Q2
  3. C.
    P+Q
  4. D.
    P2+Q2
B
分析:利用二项式定理得到(1+x)n与(1-x)n的奇数项相同,偶数项相反;利用平方差公式将(1-x2n用(1+x)n与(1-x)n表示,求出值.
解答:(1+x)n=p+Q;(1-x)n=p-Q
∴(1-x2n=(1+x)n(1-x)n=(p+Q)(p-Q)=p2-Q2
故选B
点评:本题考查通过二项式定理判断出(1+x)n与(1-x)n展开式的关系;考查平方差公式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•自贡一模)要研究可导函数f(x)=(1+x)n(n∈N*)在某点x0处的瞬时变化率,有两种方案可供选择:①直接求导,得到f′(x),再把横坐标x0代入导函数f′(x)的表达式;②先把f(x)=(1+x)n按二项式展开,逐个求导,再把横坐标x0代入导函数f′(x)的表达式.综合①②,可得到某些恒等式.利用上述思想方法,可得恒等式:Cn1+2Cn2+3Cn3+…nCnn=
n•2n-1
n•2n-1
 n∈N*

查看答案和解析>>

科目:高中数学 来源:四川省自贡市2012届高三第一次诊断性考试数学文科试题 题型:022

要研究可导函数f(x)=(1+x)n(n∈N*)在某点x0处的瞬时变化率,有两种方案可供选择:①直接求导,得到(x),再把横坐标x0代入导函数(x)的表达式;②先把f(x)=(1+x)n按二项式展开,逐个求导,再把横坐标x0代入导函数(x)的表达式.综合①、②可得到某些恒等式,利用上述思想方法,可得到恒等式:

_________(n∈N*)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

要研究可导函数f(x)=(1+x)n(n∈N*)在某点x0处的瞬时变化率,有两种方案可供选择:①直接求导,得到f′(x),再把横坐标x0代入导函数f′(x)的表达式;②先把f(x)=(1+x)n按二项式展开,逐个求导,再把横坐标x0代入导函数f′(x)的表达式.综合①②,可得到某些恒等式.利用上述思想方法,可得恒等式:Cn1+2Cn2+3Cn3+…nCnn=________ n∈N*

查看答案和解析>>

科目:高中数学 来源:2012年四川省自贡市高考数学一模试卷(文科)(解析版) 题型:解答题

要研究可导函数f(x)=(1+x)n(n∈N*)在某点x处的瞬时变化率,有两种方案可供选择:①直接求导,得到f′(x),再把横坐标x代入导函数f′(x)的表达式;②先把f(x)=(1+x)n按二项式展开,逐个求导,再把横坐标x代入导函数f′(x)的表达式.综合①②,可得到某些恒等式.利用上述思想方法,可得恒等式:Cn1+2Cn2+3Cn3+…nCnn=     n∈N*

查看答案和解析>>

科目:高中数学 来源:2010年广东省广州市名师高考数学模拟试试卷(解析版) 题型:解答题

要研究可导函数f(x)=(1+x)n(n∈N*)在某点x处的瞬时变化率,有两种方案可供选择:①直接求导,得到f′(x),再把横坐标x代入导函数f′(x)的表达式;②先把f(x)=(1+x)n按二项式展开,逐个求导,再把横坐标x代入导函数f′(x)的表达式.综合①②,可得到某些恒等式.利用上述思想方法,可得恒等式:Cn1+2Cn2+3Cn3+…nCnn=     n∈N*

查看答案和解析>>

同步练习册答案