精英家教网 > 高中数学 > 题目详情
4.设x,y∈R且满足$\left\{\begin{array}{l}{x≥1}\\{x+y-6≤0}\\{y≥x}\end{array}\right.$,则z=x+2y的最小值等于(  )
A.1B.2C.3D.4

分析 作出可行域,利用平移即求出z的最小值.

解答 解:由z=x+2y,得y=-$\frac{1}{2}$x+$\frac{z}{2}$,作出不等式对应的可行域
平移直线y=-$\frac{1}{2}$x+$\frac{z}{2}$,由平移可知当直线y=-$\frac{1}{2}$x+$\frac{z}{2}$经过点A时,直线y=-$\frac{1}{2}$x+$\frac{z}{2}$的截距最小,
此时z取得最小值,
由$\left\{\begin{array}{l}{x=1}\\{y=x}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=1}\\{y=1}\end{array}\right.$,即A(1,1),
代入z=x+2y,得z=1+2×1=3,
z=x+2y的最小值等于3
故选:C.

点评 本题主要考查线性规划的应用,利用图象平行求得目标函数的最小值,利用数形结合是解决线性规划问题中的基本方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.某单位的迎新年活动中有一个节目,参与者掷一颗骰子连续三次,制定规则如下:
掷出的点数分为三组(1,6),(2,5),(3,4),若其中有连续两次掷出的点数在同一组,
如“1,6,3”“1,1,4”“5,3,4”等,则参与者获奖.参与者获奖的概率为(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{4}{9}$D.$\frac{5}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图是某赛季甲、乙两名篮球运动员得分情况的茎叶图,从此图可看出甲、乙两人得分的中位数为(  )
A.31,26B.26,23C.36,26D.31,23

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数y=sin(x+$\frac{π}{3}$)的图象(  )
A.关于原点对称B.关于点($\frac{π}{6}$,0)对称
C.关于y轴对称D.关于直线x=$\frac{π}{6}$对称

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知a=$\sqrt{3}+\sqrt{2}$,b=$\sqrt{3}-\sqrt{2}$,则a,b的等差中项为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若sinx<ax对x∈(0,$\frac{π}{2}$)恒成立,则a的最小值为(  )
A.1B.$\frac{1}{2}$C.$\frac{π}{2}$D.$\frac{2}{π}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若函数f(x)=sin2ωx-$\sqrt{3}$cos2ωx的图象的相邻两条对称轴之间的距离为$\frac{π}{3}$,则实数ω的值为(  )
A.$\frac{3}{2}$B.3C.±$\frac{3}{2}$D.±3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在△ABC中,角A,B,C的对边分别为a,b,c,且bcosC-ccos(A+C)=3acosB.
(1)求cosB的值;
(2)若$\overrightarrow{BA}$•$\overrightarrow{BC}$=2,且b=3,求a,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.平面内的向量$\overrightarrow{a}$=(3,2),$\overrightarrow{b}$=(-1,2),$\overrightarrow{c}$=(4,1).
(1)若($\overrightarrow{a}$+k$\overrightarrow{c}$)⊥(2$\overrightarrow{b}$-$\overrightarrow{a}$),求实数k的值;
(2)若向量$\overrightarrow{d}$满足$\overrightarrow{d}$∥$\overrightarrow{c}$,且|$\overrightarrow{d}$|=$\sqrt{34}$,求向量$\overrightarrow{d}$的坐标.

查看答案和解析>>

同步练习册答案