精英家教网 > 高中数学 > 题目详情
20.不等式x2-x-a2-a+1>0对x∈R恒成立,则实数a的取值范围为($-\frac{3}{2}$,$\frac{1}{2}$).

分析 若不等式x2-x-a2-a+1>0对x∈R恒成立,则△=1-4(-a2-a+1)<0,解得实数a的取值范围.

解答 解:若不等式x2-x-a2-a+1>0对x∈R恒成立,
则△=1-4(-a2-a+1)<0,
即4a2+4a-3<0,
解得:a∈($-\frac{3}{2}$,$\frac{1}{2}$),
故答案为:($-\frac{3}{2}$,$\frac{1}{2}$).

点评 本题考查的知识点是二次函数的图象和性质,恒成立问题,转化思想,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.甲、乙两人进行射击比赛,各射击4局,每局射击10次,射击命中目标得1分,未命中目标得0分.两人4局的得分情况如下:
6699
79xy
(Ⅰ)已知在乙的4局比赛中随机选取1局时,此局得分小于6分的概率不为零,且在4局比赛中,乙的平均得分高于甲的平均得分,求x+y的值;
(Ⅱ)如果x=6,y=10,从甲、乙两人的4局比赛中随机各选取1局,并将其得分分别记为a,b,求a≥b的概率;
(Ⅲ)在4局比赛中,若甲、乙两人的平均得分相同,且乙的发挥更稳定,写出x的所有可能取值.(结论不要求证明)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=x2+m,g(x)=($\frac{1}{2}$)x,若“任意x1∈[-1,3],存在x2∈[0,2],使f(x1)≥g(x2)”是真命题,则实数m的取值范围是m≥$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.定义在R上的奇函数f(x),对于?x∈R,都有f($\frac{3}{2}$+x)=f($\frac{3}{2}$-x),且满足f(5)>-2,f(2)=m-$\frac{3}{m}$,则实数m的取值范围是{m|m<-1,或0<m<3}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.把椭圆$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{9}$=1的每个点的横坐标缩短到原来的$\frac{1}{4}$,纵坐标缩短到原来的$\frac{1}{3}$,则所得曲线方程x2+y2=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.过点(-1,0)的直线1与曲线y=$\sqrt{x}$相切,则曲线y=$\sqrt{x}$与l及x轴所围成的封闭图形的面积为$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.若点M到点F(0,2)的距离与到x轴的距离相等,且点Q满足$\overrightarrow{QM}=\overrightarrow{MF}$.
(1)求动点Q的轨迹C的方程;
(2)若点P(x0,y0)为圆x2+y2=1上一动点,过点P作圆的切线1与(1)中的曲线C相交于A、B两点(A、B在y轴的两侧),求平面图形OAFB面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆C:x2+$\frac{{y}^{2}}{81}$=1.
(1)问与椭圆C有相同焦点的椭圆有多少个?写出其中两个椭圆方程;
(2)与椭圆C有相同焦点且经过点P(3,-3)的椭圆有几个?写出它的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=x|x-a|(a>0).
(Ⅰ)不等式f(x)≤1在[0,n]上恒成立,当n取得最大值时,求a的值;
(Ⅱ)在(Ⅰ)的条件下,若对于任意的x∈R,不等式f(x+t)≥f(x)-t(x≥0)恒成立,求t的取值范围.

查看答案和解析>>

同步练习册答案