精英家教网 > 高中数学 > 题目详情
7.不等式$\frac{1}{1+lgx}$+$\frac{1}{1-lgx}$>2的解集为(  )
A.($\frac{1}{10}$,1)∪(1,10)B.($\frac{1}{10}$,1)∪(2,10)C.($\frac{1}{10}$,10)D.(1,+∞)

分析 移项通分整理可得原不等式等价于(lgx-1)(lgx+1)<0且lgx≠0,结合对数的性质可得.

解答 解:移项通分可化原不等式为$\frac{1-lgx+1+lgx-2(1-l{g}^{2}x)}{(1+lgx)(1-lgx)}$>0,
整理可得$\frac{2l{g}^{2}x}{(lgx-1)(lgx+1)}$<0,等价于(lgx-1)(lgx+1)<0且lgx≠0,
解得-1<lgx<1且lgx≠0,解得$\frac{1}{10}$<x<10且x≠1
故选:A

点评 本题考查分式不等式的解法,涉及对数的运算,转化为整式不等式是解决问题的关键,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知9a=2b=$\frac{1}{36}$,求$\frac{1}{a}$+$\frac{2}{b}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知曲线f(x)=e2x-2ex+ax-1存在两条斜率为3的切线,则实数a的取值范围为(  )
A.(3,+∞)B.(3,$\frac{7}{2}$)C.(-∞,$\frac{7}{2}$)D.(0,3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设曲线y=xn+1(n∈N*)在点(1,1)处的切线与y轴的交点的纵坐标为yn,令bn=2yn,b1•b2•…b2010的值为22010•2010!.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设定义在R上的函数f(x)、g(x)满足$\frac{f(x)}{g(x)}$=ax,且f′(x)g(x)>f(x)g′(x),$\frac{f(1)}{g(1)}$+$\frac{f(-1)}{g(-1)}$=$\frac{5}{2}$,则有穷数{$\frac{f(n)}{g(n)}$+2n-1}(n∈N*)的前8项和为(  )
A.574B.576C.1088D.1090

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.数列{an}满足a1=1,nan+1=(n+1)an+n(n+1),n∈N*,求an

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知角α、β的终边分别与⊙O:x2+y2=1交于点P($\frac{4}{5}$,-$\frac{3}{5}$)、且OP⊥OQ,则sinα=-$\frac{3}{5}$,tanβ=$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=alnx+ex(a>0),若f(3x)<f(x2+a),求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知集合A={x|x2-5x+4>0},B={x|x2-x-6≤0},求A∩B,A∪B.

查看答案和解析>>

同步练习册答案