精英家教网 > 高中数学 > 题目详情

【题目】调查表明:甲种农作物的长势与海拔高度、土壤酸碱度、空气湿度的指标有极强的相关性,现将这三项的指标分别记为x,y,z,并对它们进行量化:0表示不合格,1表示临界合格,2表示合格,再用综合指标ω=x+y+z的值评定这种农作物的长势等级,若ω≥4,则长势为一级;若2≤ω≤3,则长势为二级;若0≤ω≤1,则长势为三级,为了了解目前这种农作物长势情况,研究人员随机抽取10块种植地,得到如表中结果:

种植地编号

A1

A2

A3

A4

A5

(x,y,z)

(1,1,2)

(2,1,1)

(2,2,2)

(0,0,1)

(1,2,1)

种植地编号

A6

A7

A8

A9

A10

(x,y,z)

(1,1,2)

(1,1,1)

(1,2,2)

(1,2,1)

(1,1,1)

(Ⅰ)在这10块该农作物的种植地中任取两块地,求这两块地的空气湿度的指标z相同的概率;
(Ⅱ)从长势等级是一级的种植地中任取一块地,其综合指标为A,从长势等级不是一级的种植地中任取一块地,其综合指标为B,记随机变量X=A﹣B,求X的分布列及其数学期望.

【答案】解:(Ⅰ)由表可知:空气湿度指标为1的有A2 , A4 , A5 , A7 , A9 , A10空气湿度指标为2的有A1 , A3 , A6 , A8
在这10块种植地中任取两块地,基本事件总数n=
这两块地的空气温度的指标z相同包含的基本事件个数
∴这两地的空气温度的指标z相同的概率
(Ⅱ)由题意得10块种植地的综合指标如下表:

编号

A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

综合指标

4

4

6

1

4

4

3

5

4

3

其中长势等级是一级(ω≥4)有A1 , A2 , A3 , A5 , A6 , A8 , A9 , 共7个,
长势等级不是一级(ω<4)的有A4 , A7 , A10 , 共3个,
随机变量X=A﹣B的所有可能取值为1,2,3,4,5,
w=4的有A1 , A2 , A5 , A6 , A9共5块地,w=3的有A7 , A10共2块地,这时有X=4﹣3=1
所以
同理
∴X的分布列为:

X

1

2

3

4

5

P


【解析】(Ⅰ)由表可知:空气湿度指标为1的有A2 , A4 , A5 , A7 , A9 , A10 , 空气湿度指标为2的有A1 , A3 , A6 , A8 , 求出这10块种植地中任取两块地,基本事件总数n,这两块地的空气温度的指标z相同包含的基本事件个数,然后求解概率.(Ⅱ)随机变量X=A﹣B的所有可能取值为1,2,3,4,5,求出概率得到分布列,然后求解期望即可.
【考点精析】解答此题的关键在于理解离散型随机变量及其分布列的相关知识,掌握在射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.离散型随机变量的分布列:一般的,设离散型随机变量X可能取的值为x1,x2,.....,xi,......,xn,X取每一个值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,则称表为离散型随机变量X 的概率分布,简称分布列.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在高中学习过程中,同学们经常这样说:“如果物理成绩好,那么学习数学就没什么问题.”某班针对“高中生物理学习对数学学习的影响”进行研究,得到了学生的物理成绩与数学成绩具有线性相关关系的结论,现从该班随机抽取5名学生在一次考试中的物理和数学成绩,如表:

成绩/编号

1

2

3

4

5

物理(x)

90

85

74

68

63

数学(y)

130

125

110

95

90

(参考公式: = =
参考数据:902+852+742+682+632=29394,90×130+85×125+74×110+68×95+63×90=42595.
(1)求数学成绩y关于物理成绩x的线性回归方程 = x+ 精确到0.1),若某位学生的物理成绩为80分,预测他的数学成绩;
(2)要从抽取的这五位学生中随机选出三位参加一项知识竞赛,以X表示选中的学生的数学成绩高于100分的人数,求随机变量X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知递增数列{an},a1=2,其前n项和为Sn , 且满足3(Sn+Sn1)= +2(n≥2).
(1)求数列{an}的通项公式;
(2)若数列{bn}满足 =n,求其前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中xOy中,已知曲线E经过点P(1, ),其参数方程为 (α为参数),以原点O为极点,x轴的正半轴为极轴建立极坐标系.
(1)求曲线E的极坐标方程;
(2)若直线l交E于点A、B,且OA⊥OB,求证: 为定值,并求出这个定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|2x﹣a|+|2x+3|,g(x)=|x﹣1|+2.
(Ⅰ)若a=1,解不等式f(x)<6;
(Ⅱ)若对任意x1∈R,都有x2∈R,使得f(x1)=g(x2)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)在R上的导函数为f′(x),对x∈R有f(x)+f(﹣x)=x2 , 在(0,+∞)上f′(x)﹣x<0,若f(4﹣m)﹣f(m)≥8﹣4m,则实数m的取值范围是(
A.[2,+∞)
B.(﹣∞,2]
C.(﹣∞,2]∪[2,+∞)
D.[﹣2,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= 的定义域为R.
(Ⅰ)求m的取值范围;
(Ⅱ)若m的最大值为n,解关于x的不等式:|x﹣3|﹣2x≤2n﹣4.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某次数学测试之后,数学组的老师对全校数学总成绩分布在[105,135)的n名同学的19题成绩进行了分析,数据整理如下:

组数

分组

19题满分人数

19题满分人数占本组人数比例

第一组

[105,110]

15

0.3

第二组

[110,115)

30

0.3

第三组

[115,120)

x

0.4

第四组

[120,125)

100

0.5

第五组

[125,130)

120

0.6

第六组

[130,135)

195

y

(Ⅰ)补全所给的频率分布直方图,并求n,x,y的值;
(Ⅱ)现从[110,115)、[115,120)两个分数段的19题满分的试卷中,按分层抽样的方法抽取9份进行展出,并从9份试卷中选出两份作为优秀试卷,优秀试卷在[115,120)中的分数记为ξ,求随机变量ξ的分布列及期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|sinx|(x∈[﹣π,π]),g(x)=x﹣2sinx(x∈[﹣π,π]),设方程f(f(x))=0,f(g(x))=0,g(g(x))=0的实根的个数分别为m,n,t,则m+n+t=(
A.9
B.13
C.17
D.21

查看答案和解析>>

同步练习册答案