精英家教网 > 高中数学 > 题目详情

【题目】设f(x)=x3+mlog2(x+ )(m∈R,m>0),则不等式f(m)+f(m2﹣2)≥0的解是 . (注:填写m的取值范围)

【答案】m≥1
【解析】解:因为f(﹣x)=﹣x3+log2(﹣x+ )=﹣x3﹣log2(x+ ),
所以函数f(x)=x3+mlog2(x+ )(m∈R,m>0)是定义域为R的奇函数,且在R上单调递增,
所以f(m)+f(m2﹣2)≥0f(m2﹣2)≥﹣f(m)f(m2﹣2)≥f(﹣m)m2﹣2≥﹣mm≥1或m≤﹣2
因为m∈R,m>0,所以m≥1.
所以答案是:m≥1.
【考点精析】根据题目的已知条件,利用奇偶性与单调性的综合的相关知识可以得到问题的答案,需要掌握奇函数在关于原点对称的区间上有相同的单调性;偶函数在关于原点对称的区间上有相反的单调性.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某公司引进一条价值30万元的产品生产线,经过预测和计算,得到生产成本降低万元与技术改造投入万元之间满足:①的乘积成正比;②当时, ,并且技术改造投入比率 为常数且

1)求的解析式及其定义域;

2)求的最大值及相应的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在下列四个正方体中,为正方体的两个顶点,为所在棱的中点,则在这四个正方体中,直接与平面不平行的是(

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足a1=1,且anan+1=2n , n∈N* , 则数列{an}的通项公式为(
A.an=( n1
B.an=( n
C.an=
D.an=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列满足.

(1)求的通项公式;

(2)设等比数列满足,问: 与数列的第几项相等?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=2,AA1=6,点E、F分别在棱BB1、CC1上,且BE= BB1 , C1F= CC1

(1)求平面AEF与平面ABC所成角α的余弦值;
(2)若G为BC的中点,A1G与平面AEF交于H,且设 = ,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当时,讨论的单调性;

(2)若在点处的切线方程为,若对任意的

恒有,求的取值范围(是自然对数的底数)。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】菜农定期使用低害杀虫农药对蔬菜进行喷洒,以防止害虫的危害,但采集上市时蔬菜仍存有少量的残留农药,食用时需要用清水清洗干净,下表是用清水 (单位:千克)清洗该蔬菜千克后,蔬菜上残留的农药 (单位:微克)的统计表:

在坐标系中描出散点图,并判断变量的相关性;

2)若用解析式作为蔬菜农药残量与用水量的回归方程,令,计算平均值,完成以下表格(填在答题卡中),求出的回归方程.(精确到0.1)

3)对于某种残留在蔬菜上的农药,当它的残留量低于20微克时对人体无害,为了放心食用该蔬菜,请估计需要用多少千克的清水清洗一千克蔬菜?(精确到0.1,参考数据)(附:线性回归方程计算公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在(0, )上的函数f(x),f′(x)是它的导函数,且恒有f(x)>f′(x)tanx成立,则(
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案