精英家教网 > 高中数学 > 题目详情
16、用数学归纳法证明4+3n+2能被13整除,其中n∈N*
分析:用数学归纳法证明整除问题时分为两个步骤,第一步,先证明当当n=1时,结论显然成立,第二步,先假设假设当n=k时结论成立,利用此假设结合因式的配凑法,证明当n=k+1时,结论也成立即可.
解答:证明:(1)当n=1时,42×1+1+31+2=91能被13整除
(2)假设当n=k时,42k+1+3k+2能被13整除,则当n=k+1时,
42(k+1)+1+3k+3=42k+1•42+3k+2•3-42k+1•3+42k+1•3
=42k+1•13+3•(42k+1+3k+2?)
∵42k+1•13能被13整除,42k+1+3k+2能被13整除
∴当n=k+1时也成立
由①②知,当n∈N*时,42n+1+3n+2能被13整除
点评:本题主要考查数学归纳法,数学归纳法的基本形式:
设P(n)是关于自然数n的命题,若1°P(n0)成立(奠基)
2°假设P(k)成立(k≥n0),可以推出P(k+1)成立(归纳),则P(n)对一切大于等于n0的自然数n都成立
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

用数学归纳法证明关于n的恒等式时,当n=k时,表达式为1×4+2×7+…+k(3k+1)=k(k+1)2,则当n=k+1时,待证表达式应为
1×4+2×7+…+k(3k+1)+(k+1)(3k+4)=(k+!)(k+2)2
1×4+2×7+…+k(3k+1)+(k+1)(3k+4)=(k+!)(k+2)2

查看答案和解析>>

科目:高中数学 来源: 题型:

用数学归纳法证明等式  
1
n+1
+
1
n+2
+…+
1
3n+1
>1(n≥2)
的过程中,由n=k递推到n=k+1时不等式左边(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

用数学归纳法证明“4 2n-1+3 n+1(n∈N *)能被13整除”的第二步中,当n=k+1时为了使用归纳假设,对4 2k+1+3 k+2变形正确的是(    )

A.16(42k-1+3 k+1)-13×3k+1

B.4×42k+9×3k

C.(42k-1+3k+1)+15×42k-1+2×3k+1

D.3(42k-1+3k+1)-13×42k-1

查看答案和解析>>

科目:高中数学 来源: 题型:

用数学归纳法证明4+3n+2能被13整除,其中n∈N*.

查看答案和解析>>

同步练习册答案