设,函数.
(1)当时,求在内的极大值;
(2)设函数,当有两个极值点时,总有,求实数的值.(其中是的导函数.)
(1)1;(2) .
解析试题分析:(1)当时,求, 令,求,利用的单调性,求的最大值,利用的最大值的正负,确定的正负,从而确定的单调性,并确定的正负,即的正负,得到的单调性,确定极大值,此题确定极大值需要求二阶导数,偏难;(2)先求函数,再求,由方程有两个不等实根, 确定的范围,再将代入,再整理不等式,讨论,,三种情况,反解,从而利于恒成立求出的范围.属于较难试题.
试题解析:(1)当时,,
则, 2分
令,则,
显然在内是减函数,
又因,故在内,总有,
所以在上是减函数 4分
又因, 5分
所以当时,,从而,这时单调递增,
当时,,从而,这时单调递减,
所以在的极大值是. 7分
(2)由题可知,
则. 8分
根据题意,方程有两个不同的实根,(),
所以,即,且,因为,所以.
由,其中,可得
注意到,
所以上式化为,
即不等式对任意的
科目:高中数学 来源: 题型:解答题
函数,其中为实常数。
(1)讨论的单调性;
(2)不等式在上恒成立,求实数的取值范围;
(3)若,设,。是否存在实常数,既使又使对一切恒成立?若存在,试找出的一个值,并证明;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数的图像过坐标原点,且在点 处的切线斜率为.
(1)求实数的值;
(2) 求函数在区间上的最小值;
(Ⅲ)若函数的图像上存在两点,使得对于任意给定的正实数都满足是以为直角顶点的直角三角形,且三角形斜边中点在轴上,求点的横坐标的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,半径为30的圆形(为圆心)铁皮上截取一块矩形材料,其中点在圆弧上,点在两半径上,现将此矩形材料卷成一个以为母线的圆柱形罐子的侧面(不计剪裁和拼接损耗),设与矩形材料的边的夹角为,圆柱的体积为.
(Ⅰ)求关于的函数关系式?
(Ⅱ)求圆柱形罐子体积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数,.
(1)若,则,满足什么条件时,曲线与在处总有相同的切线?
(2)当时,求函数的单调减区间;
(3)当时,若对任意的恒成立,求的取值的集合.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数f(x)=2ax--(2+a)lnx(a≥0)
(Ⅰ)当时,求的极值;
(Ⅱ)当a>0时,讨论的单调性;
(Ⅲ)若对任意的a∈(2,3),x1,x2∈[1,3],恒有成立,求实数m的取值范围。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com