精英家教网 > 高中数学 > 题目详情

如图所示的几何体是由以正三角形为底面的直棱柱被平面所截而得. 的中点.

(1)当时,求平面与平面的夹角的余弦值;

(2)当为何值时,在棱上存在点,使平面

(1)分别取的中点,连接

以直线分别为轴、轴、轴建立如图所示的空间直角坐标系,,则的坐标分别为(1,0,1)、(0,,3)、(-1,0,4),

 ∴=(-1,,2),=(-2,0,3)

设平面的法向量

,可取         …… 3分

平面的法向量可以取           

           …… 5分

∴平面与平面的夹角的余弦值为.                  ……6分

(2)在(1)的坐标系中,=(-1,,2),=(-2,0,-1).

上,设,则

于是平面的充要条件为

                                 

由此解得,          

即当=2时,在上存在靠近的第一个四等分点,使平面. ……12分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图所示的几何体是由以等边三角形ABC为底面的棱柱被平面DEF所截而得,已知FA⊥平面ABC,AB=2,BD=1,AF=2,CE=3,O为AB的中点.
(Ⅰ)求平面DEF与平面ABC相交所成锐角二面角的余弦值;
(Ⅱ)在DE上是否存在一点P,使CP⊥平面DEF?如果存在,求出DP的长;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

5、如图所示的几何体是由一个正三棱锥P-ABC与正三棱柱ABC-A1B1C1组合而成,现用3种不同颜色对这个几何体的表面染色(底面A1B1C1不涂色),要求相邻的面均不同色,则不同的染色方案共有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示的几何体是由以正三角形ABC为底面的直棱柱被平面 DEF所截而得.AB=2,BD=1,CE=3,AF=a,O为AB的中点.
(1)当a=4时,求平面DEF与平面ABC的夹角的余弦值;
(2)当a为何值时,在棱DE上存在点P,使CP⊥平面DEF?

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示的几何体是由以等边三角形ABC为底面的棱柱被平面DEF所截而得,已知FA⊥
平面ABC,AB=2,AF=2,CE=3,BD=1,O为BC的中点.
(1)求证:AO∥平面DEF;
(2)求证:平面DEF⊥平面BCED;
(3)求平面DEF与平面ABC相交所成锐角二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示的几何体是由以等边三角形ABC为底面的棱柱被平面DEF所截而得,已知FA⊥平面ABC,BD=1,AF=2,CE=3,O为AB的中点.
(1)求证:OC⊥DF;
(2)试问线段CE上是否存在一点P,使得OP∥平面DEF?若存在,求出CP的长度,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案