精英家教网 > 高中数学 > 题目详情

选修4-5;不等式选讲
已知不等式|x+1|+|x-2|≥m的解集是R.
(I)求实数m的取值范围:
(II)在(1)的条件下,当实数m取得最大值时,试判断数学公式是否成立?并证明你的结论.

解:(I)由绝对值不等式性质知:
|x+1|+|x-2|≥|(x+1)-(x-2)|=3对x∈R恒成立
故不等式|x+1|+|x-2|≥m的解集是R,只须m≤3即可
∴m的取值范围是(-∞,3]…(4分)
(II)由(I)知实数m的最大值为3
当m=3时,不等式
这是一个正确的不等式,证明如下:
∵2>2
∴6+2+7≥3+2+10,即(2>(2
两边开方得,故原不等式成立. …(10分)
分析:(I)由绝对值不等式的性质:|a±b|≤|a|+|b|,可得已知不等式左边的最小值为3,由此结合题意可得m的取值范围是(-∞,3].
(II)在(I)条件下,即证明成立,注意到不等式两边都是正数,所以证明不等式左边的平方大于右边的平方,再开方即可得到不等式成立.
点评:本题以含有绝对值的不等式恒成立为载体,求参数的最大值,并在此情况下证明含有根式的不等式正确,着重考查了绝对值不等式的性质和不等式证明的常用方法等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

选修4-5:不等式选讲
设x,y,z∈(0,+∞),且x+y+z=1,求
1
x
+
4
y
+
9
z
的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【选修4-5:不等式选讲】
求下列不等式的解集
(Ⅰ)|2x-1|-|x+3|>0
(Ⅱ)x+|2x-1|>3.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-5:不等式选讲:
设正有理数x是
2
的一个近似值,令y=1+
1
1+x

(Ⅰ)若x>
2
,求证:y<
2

(Ⅱ)比较y与x哪一个更接近于
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•盐城模拟)(选修4-5:不等式选讲)
已知a,b,c为正数,且a2+a2+c2=14,试求a+2b+3c的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•乌鲁木齐一模)选修4-5:不等式选讲
设函数,f(x)=|x-1|+|x-2|.
(I)求证f(x)≥1;
(II)若f(x)=
a2+2
a2+1
成立,求x的取值范围.

查看答案和解析>>

同步练习册答案