精英家教网 > 高中数学 > 题目详情
13.已知O是坐标原点,F是椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的一个焦点,过F且与x轴垂直的直线与椭圆交于M,N两点,则cos∠MON的值为(  )
A.$\frac{5}{13}$B.-$\frac{5}{13}$C.$\frac{2\sqrt{13}}{13}$D.-$\frac{2\sqrt{13}}{13}$

分析 由题意画出图形,求出椭圆的通径,进一步求出tan∠MOF=$\frac{3}{2}$,再利用万能公式得答案.

解答 解:不妨设F为椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的右焦点,
由a2=4,b2=3,得c2=a2-b2=1,
∴F(1,0),则M($c,\frac{{b}^{2}}{a}$)=(1,$\frac{3}{2}$),N($c,-\frac{{b}^{2}}{a}$)=(1,-$\frac{3}{2}$),
∴tan∠MOF=$\frac{3}{2}$,
∴cos∠MON=$\frac{1-ta{n}^{2}∠MOF}{1+ta{n}^{2}∠MOF}$=$\frac{1-(\frac{3}{2})^{2}}{1+(\frac{3}{2})^{2}}=-\frac{5}{13}$.
故选:B.

点评 本题考查椭圆的简单性质,考查了椭圆通径的求法,训练了三角函数中万能公式的应用,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知A,B,C,D是空间不共面四点.且满足AB=CD,AC=BD,AD=BC,则△BCD是(  )
A.钝角三角形B.直角三角形C.锐角三角形D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)的定义域为(0,+∞)且f(x+y)=f(x)+f(y)对一切正实数x、y都成立,若f(8)=4,则f(2)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数y=$|tan(-2x-\frac{π}{6})|$+3图象的对称轴方程为x=$\frac{kπ}{4}$-$\frac{π}{12}$,k∈Z,周期为π,单调递减区间为($\frac{kπ}{2}$-$\frac{π}{3}$,$\frac{kπ}{2}$-$\frac{π}{12}$],k∈Z,.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=m(x-$\frac{1}{x}$)-2lnx(m∈R),g(x)=-$\frac{m}{x}$,若至少存在一个x0∈[1,e],使得f(x0)<g(x0)成立,则实数m的范围是(  )
A.(-∞,$\frac{2}{e}$]B.(-∞,$\frac{2}{e}$)C.(-∞,0]D.(-∞,0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数y=2sin(ωx+φ)在区间[0,$\frac{4}{3}$π]上单调递增,且f($\frac{π}{3}$)=0,f($\frac{4}{3}$π)=2,则函数的最小正周期为(  )
A.$\frac{π}{2}$B.πC.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设计一个算法,判断一个正的n(n>2)位数是不是回文数,用自然语言描述算法的步骤.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=lnx-2ax3(a>0),若|f(x)|≥$\frac{1}{2}$对于任意的x∈(0,1]恒成立,则实数a的取值范围为(  )
A.[$\frac{\sqrt{e}}{6}$,+∞)B.[$\frac{1}{6}$,$\frac{\sqrt{e}}{6}$]C.[$\frac{1}{6}$,+∞)D.[$\frac{1}{3}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{2}$=1,D(0,-$\frac{\sqrt{2}}{3}$),直线l过D,且与椭圆交于M,N两点,证明:以MN为直径的圆过定点.

查看答案和解析>>

同步练习册答案