精英家教网 > 高中数学 > 题目详情

【题目】已知是方程的两根,数列是递增的等差数列,数列的前项和为,且.

1)求数列的通项公式;

2)记,求数列的前.

【答案】(1)2.

【解析】

1)由题意得出,解出方程得出的值,然后列首项与公差的方程组,求出这两个量的值,再利用等差数列的通项公式可得出数列的通项公式,令,由可求出的值,然后令,由得出将两式相减可得出数列为等比数列,求出该数列的公比,可得出数列的通项公式;

2)求出数列的通项公式,然后利用错位相减法求出数列的前项和.

1)解方程,可得9

是方程的两根,数列是递增的等差数列,

,设公差为,则,解得.

对于数列.

时,,解得

时,,化为,即

因此数列是等比数列,

2

数列的前项和

两式相减可得

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某气象仪器研究所按以下方案测试一种“弹射型”气象观测仪器的垂直弹射高度:A、B、C三地位于同一水平面上,在C处进行该仪器的垂直弹射,观测点A、B两地相距100米,∠BAC=60°,在A地听到弹射声音的时间比在B地晚秒. A地测得该仪器弹至最高点H时的仰角为30°.

(1)求A、C两地的距离;

(2)求该仪器的垂直弹射高度CH.(声音的传播速度为340米/秒)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)当时,讨论的单调性;

(2)设时,若对任意,存在使,求实数取值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx),gx)满足关系gx)=fxfx),其中α是常数.

(1)设fx)=cosx+sinx,求gx)的解析式;

(2)设计一个函数fx)及一个α的值,使得

(3)当fx)=|sinx|+cosx时,存在x1x2R,对任意xRgx1)≤gx)≤gx2)恒成立,求|x1-x2|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+2cosx,g(x)=ex(cosx﹣sinx+2x﹣2),其中e≈2.17828…是自然对数的底数.(13分)
(Ⅰ)求曲线y=f(x)在点(π,f(π))处的切线方程;
(Ⅱ)令h(x)=g (x)﹣a f(x)(a∈R),讨论h(x)的单调性并判断有无极值,有极值时求出极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)R上的奇函数,当x0时,解析式为f(x).

(1)f(x)R上的解析式;

(2)用定义证明f(x)(0,+∞)上为减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|x<1},B={x|3x<1},则(  )
A.A∩B={x|x<0}
B.A∪B=R
C.A∪B={x|x>1}
D.A∩B=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】三名工人加工同一种零件,他们在一天中的工作情况如图所示,其中Ai的横、纵坐标分别为第i名工人上午的工作时间和加工的零件数,点Bi的横、纵坐标分别为第i名工人下午的工作时间和加工的零件数,i=1,2,3.
①记Qi为第i名工人在这一天中加工的零件总数,则Q1 , Q2 , Q3中最大的是
②记pi为第i名工人在这一天中平均每小时加工的零件数,则p1 , p2 , p3中最大的是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】高一(1)班参加校生物竞赛学生的成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题:

(1)求高一(1)班参加校生物竞赛的人数及分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间的矩形的高;

(2)若要从分数在[80,100]之间的学生中任选2人进行某项研究,求至少有1人分数在[90,100]之间的概率.

查看答案和解析>>

同步练习册答案