【题目】如图,在棱长均为的三棱柱中,平面平面,,为与的交点.
(1)求证:;
(2)求平面与平面所成锐二面角的余弦值.
【答案】(1)详见解析;(2).
【解析】
(1)证明线垂直面,即平面,从而证明线线垂直;
(2)以为坐标原点,以,,所在直线分别为轴,轴,轴,建立如图所示的空间直角坐标系,求出平面与平面的法向量,再求出法向量夹角的余弦值,进而得到二面角的余弦值.
(1)因为四边形为菱形,所以,
又平面平面,平面平面,
所以平面,
因为平面,
所以.
(2)因为,所以菱形为正方形,
在中,,
在中,,,,
所以,,又,,
所以,平面;
以为坐标原点,以,,所在直线分别为轴,轴,轴,建立如图所示的空间直角坐标系.
,,,,
设平面的一个法向量为平面的一个法向量为,则
令,得,
令,得,
设平面与平面所成锐二面角为,
则,
所以平面与平面所成锐二面角的余弦值为.
科目:高中数学 来源: 题型:
【题目】某飞机失联,经卫星侦查,其最后出现在小岛附近,现派出四艘搜救船,为方便联络,船始终在以小岛为圆心,100海里为半径的圆上,船构成正方形编队展开搜索,小岛在正方形编队外(如图).设小岛到的距离为,,船到小岛的距离为.
(1)请分别求关于的函数关系式,并分别写出定义域;
(2)当两艘船之间的距离是多少时搜救范围最大(即最大)?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,曲线C的参数方程为,(θ为参数),以原点为极点,x轴非负半轴为极轴建立极坐标系.
(1)求曲线C的极坐标方程;
(2)在平面直角坐标系xOy中,A(﹣2,0),B(0,﹣2),M是曲线C上任意一点,求△ABM面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线的方程为,的方程为,是一条经过原点且斜率大于的直线.
(1)以直角坐标系原点为极点,轴正方向为极轴建立极坐标系,求与的极坐标方程;
(2)若与的一个公共点(异于点),与的一个公共点为,当时,求的直角坐标方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某汽车公司最近研发了一款新能源汽车,并在出厂前对100辆汽车进行了单次最大续航里程的测试。现对测试数据进行分析,得到如图所示的频率分布直方图:
(1)估计这100辆汽车的单次最大续航里程的平均值(同一组中的数据用该组区间的中点值代表).
(2)根据大量的汽车测试数据,可以认为这款汽车的单次最大续航里程近似地服从正态分布,经计算第(1)问中样本标准差的近似值为50。用样本平均数作为的近似值,用样本标准差作为的估计值,现任取一辆汽车,求它的单次最大续航里程恰在250千米到400千米之间的概率.
参考数据:若随机变量服从正态分布,则,,.
(3)某汽车销售公司为推广此款新能源汽车,现面向意向客户推出“玩游戏,送大奖”活动,客户可根据抛掷硬币的结果,操控微型遥控车在方格图上行进,若遥控车最终停在“胜利大本营”,则可获得购车优惠券3万元。已知硬币出现正、反面的概率都是0.5方格图上标有第0格、第1格、第2格、…、第20格。遥控车开始在第0格,客户每掷一次硬币,遥控车向前移动一次。若掷出正面,遥控车向前移动一格(从到)若掷出反面遥控车向前移动两格(从到),直到遥控车移到第19格胜利大本营)或第20格(失败大本营)时,游戏结束。设遥控车移到第格的概率为P试证明是等比数列,并求参与游戏一次的顾客获得优惠券金额的期望值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)当函数在点处的切线方程为,求函数的解析式;
(2)在(1)的条件下,若是函数的零点,且,求的值;
(3)当时,函数有两个零点,且,求证:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日点的轨道运行.点是平衡点,位于地月连线的延长线上.设地球质量为M1,月球质量为M2,地月距离为R,点到月球的距离为r,根据牛顿运动定律和万有引力定律,r满足方程:
.
设,由于的值很小,因此在近似计算中,则r的近似值为
A. B.
C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程为(为参数),为上的动点,点满足,点的轨迹为曲线.
(1)求曲线的直角坐标方程;
(2)在以为极点,轴的正半轴为极轴的极坐标系中,射线与的异于极点的交点为,与的异于极点的交点为,求.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com