精英家教网 > 高中数学 > 题目详情
(Ⅰ)设a1,a2,…an是各项均不为零的n(n≥4)项等差数列,且公差d≠0。若将此数列删去某一项后得到的数列(按原来的顺序)是等比数列.
(ⅰ)当n=4时,求的数值;
(ⅱ)求n的所有可能值.
(Ⅱ)求证:对于给定的正整数n(n≥4),存在一个各项及公差均不为零的等差数列b1,b2,…,bn,其中任意三项(按原来顺序)都不能组成等比数列.
解:首先证明一个“基本事实”:
一个等差数列中,若有连续三项成等比数列,则这个数列的公差d0=0.
事实上,设这个数列中的连续三项a-d0,a,a+d0成等比数列,则a2=(a-d0)(a+d0),由此得d0=0.
(Ⅰ)(ⅰ)当n=4时,由于数列的公差d≠0,故由“基本事实”推知,删去的项只可能为a2或a3
①若删去a2,则由a1,a3,a4成等比数列,得(a1+2d)2=a1(a1+3d),
因d≠0,故由上式得a1= -4d,即=-4,
此时数列为-4d,-3d,-2d,-d,满足题设.
②若删去a3,则由a1,a2,a4成等比数列,得(a1+d)2=a1(a1+3d),
因d≠0,故由上式得a1=d,即=1,
此时数列为d,2d,3d,4d,满足题设;
综上可知,的值为-4或1。
(ⅱ)若n≥6,则从满足题设的数列a1,a2,…an中删去一项后得到的数列,必有原数列中的连续三项,从而这三项既成等差数列又成等比数列,
故由“基本事实”知,数列a1,a2,…an的公差必为0,这与题设矛盾,所以满足题设的数列的项数n≤5.
又因题设n≥4,故n=4或5,
当n=4时,由(ⅰ)中的讨论知存在满足题设的数列;
当n=5时,若存在满足题设的数列a1,a2,a3,a4,a5
则由“基本事实”知,删去的项只能是a3,从而a1,a2,a4,a5成等比数列,
故(a1+d)2=a1(a1+3d),及(a1+3d)2=(a1+d)(a1+4d),
分别化简上述两个等式,得a1d=d2及a1d=-5d2,故d=0,矛盾.
因此,不存在满足题设的项数为5的等差数列;
综上可知,n只能为4.
(Ⅱ)假设对于某个正整数n,存在一个公差为d′的n项等差数列
其中三项成等比数列,这里
则有
化简,得,(*)
知,或同时为零或均不为零,
=0且=0,则有
,得,从而,矛盾;
因此,都不为零,
故由(*)式,得
因为m1,m2,m3均为非负整数,
所以上式右边为有理数,从而是一个有理数,
于是,对于任意的正整数n≥4,只要取为无理数,则相应的数列b1,b2,…,bn就是满足要求的数列,例如,取b1=1,,那么n项数列满足要求.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

10、设a1,a2,…,an是1,2,…,n的一个排列,把排在ai的左边且比ai小的数的个数称为ai的顺序数(i=1,2,…,n).如在排列6,4,5,3,2,1中,5的顺序数为1,3的顺序数为0.则在由1、2、3、4、5、6、7、8这八个数字构成的全排列中,同时满足8的顺序数为2,7的顺序数为3,5的顺序数为3的不同排列的种数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设a1,a2,…,an为正数,求证:
a
2
1
a2
+
a
2
2
a3
+…+
a
2
n-1
an
+
a
2
n
a1
≥a1+a2+…+an

查看答案和解析>>

科目:高中数学 来源: 题型:

设a1,a2,a3,a4,a5为自然数,A={a1,a2,a3,a4,a5},B={a12,a22,a32,a42,a52},且a1<a2<a3<a4<a5,并满足A∩B={a1,a4},a1+a4=10,A∪B中的所有元素之和为256,则集合A为
{1,2,3,9,12}或{1,3,5,9,11}
{1,2,3,9,12}或{1,3,5,9,11}

查看答案和解析>>

科目:高中数学 来源: 题型:

设a1,a2,…,an是1,2,…,n的一个排列,把排在ai的左边且比ai小的数的个数称为ai的顺序数(i=1,2,,…,n).如在排列6,4,5,3,2,1中,5的顺序数为1,3的顺序数为0.则在由1、2、3、4、5、6、7、8这八个数字构成的全排列中,同时满足8的顺序数为2,7的顺序数为4,4的顺序数为2,且1、2必须相邻的不同排列的种数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知B是椭圆E:
x2
a2
+
y2
b2
=1(a
>b>0)上的一点,F是椭圆右焦点,且BF⊥x轴,B(1,
3
2
)

(Ⅰ)求椭圆E的方程;
(Ⅱ)设A1和A2是长轴的两个端点,直线l垂直于A1A2的延长线于点D,|OD|=4,P是l上异于点D的任意一点,直线A1P交椭圆E于M(不同于A1,A2),设λ=
A2M
A2P
,求λ的取值范围.

查看答案和解析>>

同步练习册答案