精英家教网 > 高中数学 > 题目详情
椭圆短轴是2,长轴是短轴的2倍,则椭圆中心到其准线的距离为
A        B       C       D
D
分析:先根据题意求得b和a,进而求得c,进而求得 
则椭圆中心到其准线距离可得.
解答:解:依题意可知b=1,a=2
∴c==
∴准线方程为y=±或x=±
∴椭圆中心到其准线距离是
故选D
点评:本题主要考查了椭圆的简单性质.属基础题.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分15分)已知椭圆的左焦点是长轴的一个四等分点,点A、B分别为椭圆的左、右顶点,过点F且不与y轴垂直的直线交椭圆于C、D两点,记直线AD、BC的斜率分别为
(1)当点D到两焦点的距离之和为4,直线轴时,求的值;
(2)求的值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆x2+(m+3)y2m(m>0)的离心率e,求m的值及椭圆的长轴和短轴的长及顶点坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若点在椭圆上,分别是该椭圆的两焦点,且,则的面积是(   )
A. 1B. 2C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
已知椭圆(a>b>0)的焦距为4,且与椭圆有相同的离心率,斜
率为k的直线l经过点M(0,1),与椭圆C交于不同两点A、B.
(1)求椭圆C的标准方程;
(2)当椭圆C的右焦点F在以AB为直径的圆内时,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过椭圆的左焦点,作轴的垂线交椭圆于点为右焦点。若,则椭圆的离心率为( )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
已知:椭圆的左右焦点为;直线经过交椭圆于两点.
(1)求证:的周长为定值.
(2)求的面积的最大值?

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆的左、右焦点分别是F1,F2,过F2作倾斜角为的直线与椭圆的一个交点为M,若MF1垂直于x轴,则椭圆的离心率为______

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆,直线l与椭圆交于A,B两点,M是线段AB的中点,连接OM并延长交椭圆于点C,设直线AB与直线OM的斜率分别为,且则椭圆离心率的取值范围为                     ; 

查看答案和解析>>

同步练习册答案