精英家教网 > 高中数学 > 题目详情
设是虚数单位,若复数
a-i
2+i
为实数,则实数a的值为(  )
A、-2
B、2
C、-
1
2
D、
1
2
考点:复数代数形式的乘除运算
专题:数系的扩充和复数
分析:化简已知复数,由复数的基本概念令虚部为0可得a值.
解答: 解:化简可得
a-i
2+i
=
(a-i)(2-i)
(2+i)(2-i)

=
2a-1-(a+2)i
5

a-i
2+i
为实数,∴a+2=0,
解得a=-2,
故选:A
点评:本题考查复数的代数形式的乘除运算,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

从[0,1]之间任意选出两个数,这两个数的平方和不大于1的概率是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的项数为2n,若a1+a3+…+a2n-1=72,a2+a4+…+a2n=90,且a2n-a1=33,求数列的公差d.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,某传动装置由两个陀螺T1,T2组成,陀螺之间没有滑动.每个陀螺都由具有公共轴的圆锥和圆柱两个部分构成,每个圆柱的底面半径和高都是相应圆锥底面半径的
1
3
,且T1,T2的轴相互垂直,它们相接触的直线与T2的轴所成角θ=arctan
2
3
.若陀螺T2中圆锥的底面半径为r(r>0).
(1)求陀螺T2的体积;
(2)当陀螺T2转动一圈时,陀螺T1中圆锥底面圆周上一点P转动到点P1,求P与P1之间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

以下有四种说法:
①若p或q为真,p且q为假,则p与q必为一真一假;
②若数列{an}的前n项和为Sn=n2+n+1,n∈N*,则an=2n,n∈N*
③若实数t满足f(t)=-t,则称t是函数f(x)的一个次不动点,设函数f(x)=lnx与函数g(x)=ex(其中e为自然对数的底数)的所有次不动点之和为m,则m=0
④若定义在R上的函数f(x)满足f(x+2)=-f(x-1),则6为函数f(x)的周期.
以上四种说法,其中正确说法的序号为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设t为实数,|
e1
|=2,|
e2
|=1,
e1
e2
的夹角为
π
3
,若向量2t
e1
+7
e2
与向量
e1
+t
e2
的夹角为钝角,则实数t的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某高校有奖励基金本金1000万元,此基金每年购买银行的两种风险和收益不同的理财产品A和B,把每年产生的收益用来奖励品学兼优的大学生,本金继续购买这两种理财产品.第一年购买理财产品A和B各500万元,为了规避风险以后规定:上一年购买产品A的本金,下一年会有20%购买产品B,而上一年购买产品B的本金,下一年会有30%购买产品A.用an,bn(n∈N*)分别表示在第n年购买理财产品A和B的本金数(单位:万元).
(1)分别求出a2,b2,a3
(2)①证明数列{an-600}是等比数列,并求an;②求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

在同一坐标系中,函数y=3x的图与y=(
1
3
)x
的图象(  )
A、关于x轴对称
B、关于y轴对称
C、关于原点对称
D、关于直线y=x对称

查看答案和解析>>

科目:高中数学 来源: 题型:

将函数y=
3
sinx
(x∈[0,π])的图象绕原点逆时针方向旋转角θ(0≤θ≤
π
2
)
得到曲线C,若对于每一个旋转角θ,曲线C都是一个函数的图象,则θ的最大值是(  )
A、
π
6
B、
π
4
C、
π
3
D、
π
2

查看答案和解析>>

同步练习册答案