精英家教网 > 高中数学 > 题目详情
10.函数f(x)=lg(1-x)+lg(3x+1)的定义域是(  )
A.[-$\frac{1}{3}$,1]B.(-$\frac{1}{3}$,$\frac{1}{3}$)C.(-$\frac{1}{3}$,1)D.(-∞,-$\frac{1}{3}$)

分析 根据对数函数的性质得到关于x的不等式组,解出即可.

解答 解:由题意得:
$\left\{\begin{array}{l}{1-x>0}\\{3x+1>0}\end{array}\right.$,解得:-$\frac{1}{3}$<x<1,
故选:C.

点评 本题考查了求函数的定义域问题,考查对数函数的性质,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$(a+1)x2+ax+a(其中a>0).
(I)若函数f(x)的导函数f′(x)有最小值为0,求曲线y=f(x)在点(0,f(0))处的切线方程;
(Ⅱ)若函数f(x)恰有一个零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.如图,已知边长为4的正方形ABCD,E是BC边上一动点(与B、C不重合),连结AE,作EF⊥AE交∠BCD的外角平分线于F设BE=x,记f(x)=$\overrightarrow{EC}$•$\overrightarrow{CF}$,则函数f(x)的值域是(0,4],当△ECF面积最大时,|$\overrightarrow{EF}$|=2$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.定义在R上的奇函数g(x),设函数f(x)=$\frac{(x+1)^{2}+g(x)}{{x}^{2}+1}$的最大值为M,最小值为m,则M+m=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数y=$\frac{2x}{x-1}$的值域为{y|y≠2}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设函数f(x)=ax-(k-1)a-x(a>0且a≠1)是定义域为R的奇函数.
(1)求实数k的值.
(2)若f(1)<0,试判断并证明函数f(x)的单调性;
(3)若f(1)=$\frac{3}{2}$,且g(x)=a2x+a-2x-2mf(x)在区间[1,∞)上的最小值为-2,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列函数中,是奇函数的是(  )
A.y=-|x|B.y=$\frac{1}{x}$C.y=3-xD.y=2x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设函数f(x)是定义在R上的函数,对定义域内的任意x,y都有f(x+y)=f(x)+f(y),且f(-1)=2.当x>0时,f(x)<0.
(1)判断f(x)的奇偶性;
(2)求f(x)在x∈[-3,5]时的最大值和最小值;
(3)若f(m)+$\frac{1}{2}$f(9)>$\frac{1}{2}$f(m2)+f(3),求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,BD是△ABC外接圆的切线,过A作BD的平行线交BC于E,交△ABC的外接圆于F.
(1)若∠D=∠ABD,BC=2$\sqrt{3}$,AC=4,求△ABC外接圆的面积;
(2)求证:AC•EF=AB•EC.

查看答案和解析>>

同步练习册答案