精英家教网 > 高中数学 > 题目详情

【题目】某种产品有4只次品和6只正品,每只产品均不相同且可区分,今每次取出一只来测试,直到这4只次品全测出为止,则最后一只次品恰好在第五次测试时被发现,则不同情况种数是______(用数字作答)

【答案】576.

【解析】分析:由题第五次测试的产品一定是次品,并且是最后一个次品,因而第五次测试应算是特殊位置了,可以分步完成,第一步:第五次测试的有几种可能; 第二步:前四次有一件正品有几种可能; 第三步:前四次有几种顺序;最后根据乘法公式计算可得共有几种可能.

详解:对四件次品编序为1,2,3,4.第五次抽到其中任一件次品有种情况.
前四次有三次是次品,一次是正品共有 种可能.
4次测试中的顺序有种可能.
∴由分步计数原理即得共有 种可能.
故答案为:576.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的公差不为零,a1=25,且a1a11a13成等比数列.

(1)求{an}的通项公式;

(2) 是{an}的前n项和,求的最大值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)的定义域为(﹣1,0),则函数f(2x+1)的定义域为( )
A.(﹣1,1)
B.
C.(﹣1,0)
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某重点中学100位学生在市统考中的理科综合分数,以 分组的频率分布直方图如图.

(1)求直方图中的值;

(2)求理科综合分数的众数和中位数;

(3)在理科综合分数为 的四组学生中,用分层抽样的方法抽取11名学生,则理科综合分数在的学生中应抽取多少人?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx+(e﹣a)x﹣b,其中e为自然对数的底数.若不等式f(x)≤0恒成立,则 的最小值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现要完成下列3项抽样调查:

①从15种疫苗中抽取5种检测是否合格.

②涡阳县某中学共有480名教职工,其中一线教师360名,行政人员48名,后勤人员72名.为了解教职工对学校校务公开方面的意见,拟抽取一个容量为20的样本.

③涡阳县某中学报告厅有28排,每排有35个座位,一次报告会恰好坐满了听众,报告会结束后,为了听取意见,需要请28名听众进行座谈.

较为合理的抽样方法是( )

A. ①简单随机抽样, ②系统抽样, ③分层抽样

B. ①简单随机抽样, ②分层抽样, ③系统抽样

C. ①系统抽样, ②简单随机抽样, ③分层抽样

D. ①分层抽样, ②系统抽样, ③简单随机抽样

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】D是含数1的有限实数集,f(x)是定义在D上的函数。若f(x)的图像绕原点逆时针旋转后与原图像重合,则在以下各项中,f(1)的取值只可能是( )

A. B. C. D. 0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】动圆M与定圆C:x2+y2+4x=0相外切,且与直线l:x-2=0相切,则动圆M的圆心的轨迹方程为(  )

A. y2-12x+12=0 B. y2+12x-12=0

C. y2+8x=0 D. y2-8x=0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , 数列{bn},{cn}满足 (n+1)bn=an+1 ,(n+2)cn= ,其中n∈N*.
(1)若数列{an}是公差为2的等差数列,求数列{cn}的通项公式;
(2)若存在实数λ,使得对一切n∈N*,有bn≤λ≤cn , 求证:数列{an}是等差数列.

查看答案和解析>>

同步练习册答案