精英家教网 > 高中数学 > 题目详情
17.已知x>1,则xlnlnx-(lnx)lnx的值是(  )
A.正数B.C.负数D.不能确定

分析 设lnx=y,则x=ey,y>0;从而代入化简即可.

解答 解:设lnx=y,则x=ey,y>0;
xlnlnx-(lnx)lnx=(eylny-yy
=${e}^{ln{y}^{y}}$-yy=yy-yy=0,
故选:B.

点评 本题考查了对数的化简与指数式的互化.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.设集合E={1,2,3,…,2n},A={a1,a2,…,an}⊆E,满足对任意ai,aj∈A,ai+aj≠2n+1.Sn=a1+a2+…+an
(1)求Sn的最值,并求出所有Sn相加所得的总和Tn
(2)n≥5时,将Sn的值从小到大排列,写出前5个值对应的集合A并说明理由
(3)$\frac{{a}_{1}^{2}+{a}_{2}^{2}+…+{a}_{n}^{2}}{{a}_{1}+{a}_{2}+…+{a}_{n}}$=$\frac{2(2n+1)}{3}$,求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数f(x)=$\frac{1}{{x}^{2}+2}$(x∈R)的最大值为$\frac{1}{2}$,最小值为不存在.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若3x-2y=2,则$\frac{2{5}^{y}}{{5}^{3x}}$=$\frac{1}{25}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知2sinαtanα=3,则cosα的值是$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=2sin2x+2$\sqrt{3}$sinx•sin(x+$\frac{π}{2}$)(ω>0).
(1)求f(x)的最小正周期;
(2)求函数f(x)在区间[0,$\frac{2π}{3}$]上的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.下列各图中表示的对应法则是不是映射?为什么?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知不等式x2+ax+b>0的解集为{x|x>2或x<-1},求a+b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.从一点O顺次引出八条射线OA、OB、OC、OD、OE、OF、OG、OH,其中每相邻两条射线的夹角都是45°,在OA上取OA=a,由A作OB的垂线AA1,A1是垂足;由点A1作OC的垂线A1A2,A2是垂足,由点A2作OD的垂线A2A3,A3是垂足,然后用同样的方法如此无限继续下去,求所得折线A1A2A3A4…的长度.

查看答案和解析>>

同步练习册答案