精英家教网 > 高中数学 > 题目详情
已知f(x)=ln(1+x)-
14
x2 是定义在[0,2]上的函数
(1)求函数f(x)的单调区间
(2)若f(x)≥c对定义域内的x恒成立,求c的取值范围..
分析:(1)先求导,然后根据二次函数法研究导数大于或小于等于零,从而得到单调性.
(2)根据(1)推导出f(1)为函数f(x)的极大值,f(0)=0,从而判断f(0)=0为函数的最小值,即可得出结果.
解答:解:(1)f'(x)=
1
1+x
1
2
x

令f'(x)=0得,x2+x-2=0 
  解得x1=-2(舍去),x2=1
当0≤x<1时,f'(x)>0,f(x)单调递增;
当1<x≤2时,f'(x)<0,f(x)单调递减.
(2)由上知:f(1)=ln2-
1
4
为函数f(x)的极大值.又因为f(0)=0,f(2)=ln3-1>0
∴f(1)>f(2)
所以f(0)=0为函数在[0,2]上的最小值,c≤0
点评:本题主要考查用导数法研究函数的单调性,基本思路是:当函数为增函数时,导数大于等于零;当函数为减函数时,导数小于等于零;对于不等式恒成立问题,只要求出函数的最值的就可以得出结果.属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=ln(1+x)-
x1+ax
(a>0).
(I) 若f(x)在(0,+∞)内为单调增函数,求a的取值范围;
(II) 若函数f(x)在x=O处取得极小值,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如果函数f(x)在区间D上有定义,且对任意x1,x2∈D,x1≠x2,都有f(
x1+x2
2
)<
f(x1)+f(x2)
2
,则称函数f(x)在区间D上的“凹函数”.
(Ⅰ)已知f(x)=ln(1+ex)-x(x∈R),判断f(x)是否是“凹函数”,若是,请给出证明;若不是,请说明理由;
(Ⅱ)对于(I)中的函数f(x)有下列性质:“若x∈[a,b],则存在x0(a,b)使得
f(b)-f(a)
b-a
=f′(x0)”成立.利用这个性质证明x0唯一;
(Ⅲ)设A、B、C是函数f(x)=ln(1+ex)-x(x∈R)图象上三个不同的点,求证:△ABC是钝角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ln(x+1).
(1)若g(x)=
1
4
x2-x+f(x)
,求g(x)在[0,2]上的最大值与最小值;
(2)当x>0时,求证
1
1+x
<f(
1
x
)<
1
x

(3)当n∈N+且n≥2时,求证:
1
2
+
1
3
+
1
4
+…+
1
n+1
<f(n)<1+
1
2
+
1
3
+…+
1
n

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ln(x+1)-ax(a∈R)
(1)当a=1时,求f(x)在定义域上的最大值;
(2)已知y=f(x)在x∈[1,+∞)上恒有f(x)<0,求a的取值范围;
(3)求证:
12+1+1
12+1
22+2+1
22+2
32+3+1
32+3
•…•
n2+n+1
n2+n
<e

查看答案和解析>>

同步练习册答案