精英家教网 > 高中数学 > 题目详情
如图是某直三棱柱ABC-DPQ被削去上底后的直观图与三视图的侧视图、俯视图.在直观图中,M是BD的中点.侧视图是直角梯形,俯视图是等腰直角三角形,有关数据如图所示.
(1)求证:EM平面ABC;
(2)求出该几何体的体积.
(1)证明:如图,取BC的中点N,连接EM,MN,AN
则MNCD,且MN=
1
2
CD=2
∴AEMN,且AE=MN
∴四边形EMNA为平行四边形
∴EMAN
∵EM?平面ABC,AN?平面ABC
∴EM平面ABC
(2)如图,连接AD,则VVABCED=VD-ABC+VD-ABE
由已知可知CD⊥面ABC,△ABC是等腰直角三角形,AB⊥AC,CD平面ABE,点D到面ABE的距离等于点C到面ABE的距离,即等于CA的长2.
VD-ABC=
1
3
×(
1
2
AB×AC)×DC
=
1
3
×(
1
2
×2×2)×4
=
8
3

VD-ABE=
1
3
×(
1
2
×AE×AB)×CA
=
1
3
×(
1
2
×2×2)×2
=
4
3

VABCED=
8
3
+
4
3
=4

故几何体的体积为4.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

已知P是边长为a的正六边形ABCDEF所成平面外一点,PA⊥AB,PA⊥AF,PA=a.则点P到边CD的距离是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,P△ABC所在平面外一点,PA=PB,CB⊥平面PAB,M是PC中点,N是AB上的点,AN=3NB,
(1)求证:MN⊥AB;
(2)当∠PAB=90°,BC=2,AB=4时,求MN的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,是一个正方体的展开图,如果将它还原为正方体,那么AB,CD,EF,GH这四条线段所在直线是异面直线的有(  )对.
A.1对B.2对C.3对D.4对

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

棱长为a的正方体A1B1C1D1-ABCD中,O为面ABCD的中心.
(1)求证:AC1⊥平面B1CD1
(2)求四面体OBC1D1的体积;
(3)线段AC上是否存在P点(不与A点重合),使得A1P面CC1D1D?如果存在,请确定P点位置,如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知PA⊥面ABCD,PA=AB=AD=
1
2
CD,∠BAD=∠ADC=90°
(1)在面PCD上找一点M,使BM⊥面PCD;
(2)求由面PBC与面PAD所成角的二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,PA垂直于矩形ABCD所在的平面,M、N分别是AB、PC的中点
(1)求证:MN平面PAD;
(2)若∠PAD=45°,求证:MN⊥平面PCD.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,底面ABCD为正方形,PA⊥平面ABCD,PA=AB,点E是PD的中点.
(1)求证:PB平面ACE;
(2)若四面体E-ACD的体积为
2
3
,求AB的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知:正方体ABCD-A1B1C1D1,AA1=2,E为棱CC1的中点.
(1)求证:B1D1⊥AE;
(2)求证:AC平面B1DE;
(3)(文)求三棱锥A-BDE的体积.
(理)求三棱锥A-B1DE的体积.

查看答案和解析>>

同步练习册答案